Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25386
Title: Restoring Consistency in Ontological Multidimensional Data Models via Weighted Repairs
Authors: Haque, Enamul
Advisor: Chiang, Fei
Department: Computing and Software
Keywords: Logic;Data Science;Data Cleaning;MCDM;CRITIC;OMD;Genetic Algorithms;Database;Datalog
Publication Date: 2020
Abstract: High data quality is a prerequisite for accurate data analysis. However, data inconsistencies often arise in real data, leading to untrusted decision making downstream in the data analysis pipeline. In this research, we study the problem of inconsistency detection and repair of the Ontology Multi-dimensional Data Model (OMD). We propose a framework of data quality assessment, and repair for the OMD. We formally define a weight-based repair-by-deletion semantics, and present an automatic weight generation mechanism that considers multiple input criteria. Our methods are rooted in multi-criteria decision making that consider the correlation, contrast, and conflict that may exist among multiple criteria, and is often needed in the data cleaning domain. After weight generation we present a dynamic programming based Min-Sum algorithm to identify minimal weight solution. We then apply evolutionary optimization techniques and demonstrate improved performance using medical datasets, making it realizable in practice.
Description: This can be considered as a multidisciplinary research where ideas from Operations Research, Data Science and Logic came together to solve an inconsistency handling problem in a special type of ontology.
URI: http://hdl.handle.net/11375/25386
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Haque_Enamul_2020April_MSc.pdf
Open Access
Thesis Data Science2.93 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue