Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25311
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHassell, John A.-
dc.contributor.authorGwynne, William D.-
dc.date.accessioned2020-02-29T04:13:02Z-
dc.date.available2020-02-29T04:13:02Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/25311-
dc.descriptionDOCTOR OF PHILOSOPHY (2019) McMaster University, Hamilton, Ontario (Medical Sciences) TITLE: Serotonergic antagonists affect the activity of breast tumor initiating cells in human and mouse models of breast cancer. AUTHOR: William D. Gwynne, BSc SUPERVISOR: Dr. John A. Hassell NUMBER OF PAGES: XXI; 255en_US
dc.description.abstractBreast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related death amongst women worldwide. The relatively unchanging breast cancer-associated mortality rate is in part due to the existence of rare tumor cells (breast tumor initiating cells; BTIC) that possess stem-like properties permitting them to survive therapy and initiate disease recurrence. Hence, identifying agents capable of eradicating these cells would be a favourable therapeutic strategy to improve the durability of breast cancer remissions. To achieve the latter objective our lab screened over 35,000 small molecules for their capacity to inhibit the viability of BTIC-enriched mouse tumor cells. Unexpectedly, several antagonists of the serotonin (5-hydroxytryptamine; 5-HT) transporter and select receptors were among the hit compounds identified in the screen. This thesis aims to establish a connection between serotonergic activity and BTIC. We accomplished the latter by assessing whether components of the 5-HT signaling system are expressed in mouse and human breast tumor cells and whether inhibition of their activity affects BTIC frequency using multiple orthogonal assays. Our data suggest that breast tumor cells of both mouse and human origin express the components necessary for 5-HT synthesis, activity and metabolism and that inhibition of these proteins with selective antagonists reduces the capacity of these cells to form tumorspheres. We demonstrate that highly selective antagonists of SERT and HTR5A target BTIC as established ex vivo cell transplantation assays. We also discovered that these agents synergize with chemotherapy in vivo to affect the growth of mouse breast tumor allografts and human breast tumor xenografts. To validate the molecular targets of these agents, we attempted to phenocopy their effects in functional assays by knocking out their respective genes using CRISPR-Cas9 technology. Collectively, this thesis contributes to an understanding of how 5-HT signaling affects BTIC and identifies serotonergic antagonists as novel anticancer agents.en_US
dc.language.isoenen_US
dc.subjectSerotonin signalingen_US
dc.subjectBreast tumor initiating cellsen_US
dc.titleSerotonergic Antagonists Affect the Activity of Breast Tumor Initiating Cells in Human and Mouse Models of Breast Canceren_US
dc.title.alternativeON SEROTONERGIC SIGNALING AND BREAST TUMOR INITIATING CELLSen_US
dc.typeThesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreetypeDissertationen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractDespite improvements in screening technologies and the development of targeted therapies breast cancer remains the second leading cause of cancer-related death among Canadian women. Whereas the current standard of care is effective at treating the majority of patients diagnosed with breast cancer, there remains a substantial proportion of patients that experience relapse after undergoing therapy. Recurrence is due in part to the existence of rare, stem-like tumor cells, termed breast tumor-initiating cells (BTIC) that are insensitive to existing anticancer agents. Hence, identifying drugs capable of targeting these cells is a desirable goal. To pursue the latter, our lab screened approximately 35,000 compounds for their capacity to affect the growth of BTIC-enriched tumor cell populations. Among the hit compounds were antagonists of the serotonin transporter and serotonin receptors, including FDA-approved psychiatric medications. Here, we explore a connection between serotonin-related proteins and BTIC activity with the aim of identifying novel therapeutic agents.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gwynne_William_D_201908_PhD.pdf
Access is allowed from: 2020-08-22
William D Gwynne PhD Thesis124.38 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue