Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25301
Title: SOIL RESPIRATION DYNAMICS IN RESPONSE TO CLIMATE OSCILLATIONS AND SHELTERWOOD HARVESTING IN A TEMPERATE PINE FOREST
Authors: Thorne, Robin F.
Advisor: Arain, M. Altaf
Department: Geography and Earth Sciences
Keywords: soil respiration;shelterwood harvest;Pinus strobus L;climate variability
Publication Date: 2020
Abstract: Understanding forest carbon uptake and associated growth response is important for carbon sequestration and water management practices given the large quantities of carbon stored in forest ecosystems. Climate variability and forest management practices influence the magnitude and rate of soil CO2 efflux; however, their combined effects are complex and not well understood. This study investigated the response of soil CO2 efflux to the combined effects of climate variability, including those caused by climate oscillations, and shelterwood harvesting in a mature temperate white pine (Pinus strobes L.) forest, located near Lake Erie in southern Ontario, Canada. Analyses indicated that local winter temperatures and precipitation were influenced by climate oscillations, which affected forest carbon dynamics. After the shelterwood harvest removed approximately a third of the overstory canopy, no significant differences were found for soil temperature and soil moisture between the pre-harvesting (2008 to 2011) and post-harvesting (2012 to 2014) periods. Despite similar climate conditions pre- and post-harvesting, soil CO2 effluxes post-harvesting were lower. A Gaussian-Gamma specification model determined that heterotrophic (autotrophic) respiration decreased (increased) between pre- and post-harvesting, respectively. Mineral-soil respiration were similar pre- and post-harvesting. Soil CO2 efflux accounted for 78±9% of the annual ecosystem respiration (RE), derived using eddy-covariance fluxes. However, the overall net ecosystem productivity showed no significant difference between pre- and post-harvesting. This was attributed to an increase in the gross ecosystem productivity post-harvesting, compensating for the increased losses (i.e. increased RE). This study highlights the complexities of measuring various components of ecosystem respiration after a disturbance, such as a harvest. The knowledge gained from this study provides a better understanding of climate variability and shelterwood harvesting influences on ecosystem respiration and can be useful for forest managers focused on carbon sequestration and forest conservation.
URI: http://hdl.handle.net/11375/25301
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thorne_Robin_F_2020February_PhD.pdf
Open Access
2.27 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue