Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24984
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHoare, Todd-
dc.contributor.advisorMishra, Ram-
dc.contributor.authorBabar, Ali-
dc.date.accessioned2019-10-07T14:02:30Z-
dc.date.available2019-10-07T14:02:30Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24984-
dc.description.abstractCurrent strategies for oral or injectable antipsychotic drug delivery typically demonstrate low bioavailability to targeted brain regions, incentivizing the development of novel delivery strategies. Delivery via the nasal cavity circumvents multiple barriers to the reaching the brain: the blood-brain barrier, first-pass metabolism and gut degradation, but requires specific drug-carrier characteristics (e.g. pH, mucoadhesion) to be effective. Employing the use of nanoparticle drug carriers (~50nm in size) within this route can further improve efficacy, due to their enhanced tissue penetration abilities. Although existing intranasal delivery platforms have demonstrated great therapeutic value, there is a lack of controlled release features–an extremely valuable addition to this pathway. Described in this thesis are biodegradable bulk hydrogels consisting of oxidized starch nanoparticles (SNPs) and carboxymethyl-chitosan (CMC) which allow for both intranasal mucosal adherence and functional controlled release of anti-psychotic drug (PAOPA) in an MK-801 pre-clinical model of schizophrenia. Results indicate that PAOPA-loaded SNP-CMC in-situ gelled hydrogels provide a sustained released profile such that they alleviate negative symptoms associated with schizophrenia (decreased social interaction time) for up to 72 hours at a decreased dosage (0.5mg/kg) when compared to acute symptom alleviation at a higher (1mg/kg) intra-peritoneal drug dosage. Also described is the formulation of nanoemulsion templated nanogels (~200nm) for eventual intranasal delivery applications. Nanogels (also consisting of SNP-CMC) demonstrated relevant degradation profiles resulting in SNP release, which may be employed for future tissue penetration applications within the nasal cavity. It is anticipated the bulk hydrogel platform (and nanogel system, once further studied) will lower required drug doses and ultimately improve clinical outcomes in treating mental illness.en_US
dc.language.isoenen_US
dc.titleHydrogel-Based Intranasal Drug Delivery Platformsen_US
dc.title.alternativeEngineering Starch Nanoparticle/Chitosan Emulsion-Templated Nanogels and In Situ-Gelling Hydrogels for the Intranasal Delivery of Anti-psychotic Medicationen_US
dc.typeThesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Babar_Ali_FinalSubmission2019September_MASc.pdf
Access is allowed from: 2020-09-26
4.98 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue