Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24961
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSlater, Gregory-
dc.contributor.authorSan Pedro, Reisa Joy-
dc.date.accessioned2019-10-07T13:42:50Z-
dc.date.available2019-10-07T13:42:50Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24961-
dc.description.abstractThe role of aquifer microorganisms in controlling arsenic contamination of Bangladesh aquifers via oxidation of organic carbon coupled with reduction of sedimentary iron oxyhydroxides and concomitant arsenic dissolution is generally accepted. What remains to be ascertained is the in situ biogeochemical mechanisms of cycling different carbon sources and directly relating indigenous microbiota to arsenic release. Using biomarker fingerprint approaches, this dissertation expanded the presently growing research in the biogeochemical carbon cycling controlling arsenic contamination in Bangladesh aquifers. Comprehensive profiles of microbial cell membrane components (PLFA and sterols) at three different aquifers tested the regional distribution of aquifer microbial community abundance, structure, and organic input potential across Araihazar. The highly variable bulk viable microbial biomass observed across these three sites confer both regional-scale and localized heterogeneous distributions of in-aquifer microbial communities which control carbon cycling in the aquifer. The lack of correlation between PLFA biomarkers and dissolved arsenic challenges the assumption that greater extent of microbial community metabolism results in an increase in arsenic in groundwater. Natural abundance radiocarbon isotope Δ14C analysis of cell membrane PLFA and available carbon pools (SOC, DOC, DIC) confirmed that young organic carbon substrates are being cycled at two of the three sites investigated here. This corroborates previous reports at nearby sites (Site B and F) thereby contributing to a well-constrained carbon source which actively support microbial metabolism over a regional scale. Sterol biomarker distributions were characterized to determine potential sources of organic input into the aquifer. In particular, the importance of raw human and/or animal sewage waste as a source of labile carbon was assessed by measuring the faecal biomarker Coprostanol and comparing its abundance to other sources of biogenic sterols using sewage input proxies (Sewage Contamination Index, Coprostanol/Cholesterol ratio). This was motivated by previous findings which correlated sewage contamination with dissolved arsenic at depth at nearby sites. While sewage contamination was low in the shallow aquifers at these sites, it is more likely that plant organic matter supported the elevated microbial abundance at shallow depths. On the other hand, evidence presented in this project suggests that sewage contamination intrudes into deeper aquifers (e.g. buried Pleistocene) and contributes to the vulnerability of previous pristine aquifers to future arsenic contamination.en_US
dc.language.isoenen_US
dc.subjectbiogeochemistryen_US
dc.subjectPLFAen_US
dc.subjectmicrobial biomarkersen_US
dc.subjectsterolsen_US
dc.subjectsewage inputen_US
dc.subjectarsenicen_US
dc.subjectgroundwateren_US
dc.subjectcontaminationen_US
dc.titleBiomarkers of biogeochemical carbon cycling at three aquifer sites in Bangladeshen_US
dc.title.alternativeBiomarkers in three Bangladesh aquifer sitesen_US
dc.typeThesisen_US
dc.contributor.departmentGeography and Earth Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
SanPedro Reisa J 2019Sept MSc.pdf
Access is allowed from: 2020-09-26
MSc thesis final revised edition3.61 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue