Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24919
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLi, Yingfu-
dc.contributor.authorZhang, Wenqing-
dc.date.accessioned2019-10-03T14:45:24Z-
dc.date.available2019-10-03T14:45:24Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24919-
dc.description.abstractIt is now widely known that some nucleic acid molecules, either DNA or RNA, are capable of forming intricate three-dimensional structures and carrying out functions of molecular recognition and catalysis. Most of known functional nucleic acids are isolated from DNA or RNA pools with random sequences using the technique of in vitro selection. With intensive research for the past three decades, a variety of functional nucleic acids have been discovered and examined for potential applications. The general objective of this thesis is to expand the repertoire of functional nucleic acids via new in vitro selection experiments and pursue their biosensing applications. I started by asking the question of whether it is possible to develop a new kind of functional nucleic acids: chimeric RNA/DNA substrates that have high activity for ribonuclease H2 from the important bacterial pathogen Clostridium difficile but much reduced activity towards the same enzymes from other bacterial species. The key rationale behind pursuing these special functional nucleic acids is my hypothesis that these molecules can eventually be developed into useful biosensors for diagnosing Clostridium difficile infection. For this reason, in my first project, I applied the in vitro selection technique to a random-sequence DNA pool, obtained several highly selective chimeric RNA/DNA substrates, and carried out in-depth analysis of their reactivities and their structural properties. During this study, I accidentally discovered a family of highly guanine-rich DNA molecules that are able to form an unusual guanine-quadruplex structure in 7 molar urea, a strong denaturing condition for nucleic acid structures. This discovery constitutes a novel observation and therefore, in my second project, I fully characterized the sequence and structural properties of these special DNA molecules and established the conditions that allow these molecules to create stable structures in 7 molar urea. I then got interested in devising a unique application to take advantage of the urea-resistant property exhibited by these molecules. Towards this end, in my third project, I used one such DNA molecule to set up a DNA detection method capable of detecting single nucleotide polymorphism in very long DNA sequences, a desired application that has never been demonstrated before. The findings made in these projects contribute to the ever-growing appreciation of functional capability and practical utility of nucleic acids.en_US
dc.language.isoenen_US
dc.subjectfunctional nucleic acidsen_US
dc.subjectin vitro selectionen_US
dc.subjectDNAzymeen_US
dc.subjectG-quadruplexen_US
dc.titleVERSATILE FUNCTIONAL NUCLEIC ACIDS AND THEIR APPLICATIONS IN BIOSENSINGen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistry and Biomedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thesis Wenqing Zhang.pdf
Access is allowed from: 2020-09-27
21.83 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue