Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24824
Title: Development of Chimpanzee Adenovirus-Vectored Vaccine Strategies Against Pulmonary Tuberculosis
Authors: Afkhami, Sam
Advisor: Xing, Zhou
Department: Medical Sciences (Molecular Virology and Immunology Program)
Keywords: Tuberculosis;Mucosal immunity;Mucosal vaccination;Chimapnzee adenovirus;Vaccine;Therapeutic
Publication Date: 2019
Abstract: The immense global tuberculosis (TB) burden highlights the shortcomings of current vaccination and antibiotic regimens. Novel prophylactic TB vaccines that can either boost or replace BCG entirely remains an active area of research. Additionally, the success of current antibiotic therapies against TB is hindered by their complexity and duration, with large percentages of patients failing to complete treatment. Multi-armed approaches are required to properly and efficiently combat diseases. Besides prophylactic vaccines, development of therapeutic vaccine strategies as an adjunct to antibiotic treatment would represent another major step in TB control. To achieve such a goal, vaccines must consider the pathogen’s life cycle, the immunological responses which they drive, and the populations in which they will ultimately be administered. As such, the purpose of this dissertation is to utilize state-of-the-art molecular cloning techniques to construct novel chimpanzee adenovirus-vectored vaccines that provide prophylactic and therapeutic immunity against pulmonary TB. By considering different phases of the pathogen’s life cycle, we aim to select a collection of antigens that are protective, regardless of disease state. Development of such platforms would lay and bolster the groundwork for improved vaccine strategies against TB.
URI: http://hdl.handle.net/11375/24824
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Afkhami_Sam_2019Sept_PhD.pdf
Access is allowed from: 2020-09-12
26.38 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue