Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24806
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMelacini, Giuseppe-
dc.contributor.authorShao, Hongzhao-
dc.date.accessioned2019-09-12T19:53:40Z-
dc.date.available2019-09-12T19:53:40Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24806-
dc.description.abstractA novel partial agonist of the exchange protein activated by cAMP isoform 1 (EPAC1), I942, was recently discovered and shown to reduce the guanine exchange factor activity of cAMP-bound EPAC1 to approximately 10% relative to cAMP activation. However, the inhibition mechanism of I942 remains unknown. Here, we utilize NMR spectroscopy to probe the inhibitory I942 - EPAC1 interactions at atomic resolution. The EPAC1 - I942 interface was mapped through intermolecular NOEs measured by 15N and 13C filtered NOESY-HSQC experiment. Intermolecular NOE mapping combined with other protein NMR methods, such as saturation transfer difference, transfer Nuclear Overhauser Effect spectroscopy and chemical shift mapping, we revealed that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of the EPAC1 cyclic nucleotide binding (CNB) domain, similar to cAMP. The PBC controls the conformation of the hinge region, and subsequently, allosterically shifts the hinge region between its active/inactive states. Molecular dynamics simulation based on the NMR spectroscopy data revealed that EPAC1-CNB adopts an intermediate conformation between its inactive and active states, which explains the partial agonist nature of I942.en_US
dc.language.isoenen_US
dc.subjectEPACen_US
dc.subjectcompetitive inhibitoren_US
dc.subjectinhibition mechanismen_US
dc.subjectNMR Spectroscopyen_US
dc.titleExamining the Inhibition Mechanism of EPACen_US
dc.title.alternativeInhibition Mechanism of EPACen_US
dc.typeThesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractThe exchange protein activated by cAMP (EPAC) is a receptor for the classical secondary messenger cAMP. EPAC is present in multiple human systems and plays a pivotal role in the development of a wide range of diseases. In this study, we aim to establish the inhibition mechanism of a novel small molecule EPAC inhibitor/partial agonist I942 using NMR spectroscopy with the goal of achieving a better understanding of EPAC inhibition and paving the way for new small molecule EPAC inhibitors that can potentially treat EPAC-related diseases such as heart failure and diabetes.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Shao_Hongzhao_finalsubmission2019September_MSc.pdf
Access is allowed from: 2020-09-06
18.51 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue