Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24743
Title: Identifying the Signaling Pathways Downstream of the Serotonin Receptor 5A in Breast Cancer
Authors: Shakeel, Mirza Shahbaz
Advisor: Hassell, John A.
Department: Biochemistry
Keywords: Breast Cancer;Proteomics;Serotonin;Breast tumor-initiating cells
Publication Date: 2019
Abstract: Breast cancer therapy resistance and disease recurrence are driven by an infrequent population of stem-like tumor cells, termed breast cancer stem cells or tumor-initiating cells (BTIC). Whereas drugs that target BTIC could be combined with conventional therapies to provide durable remissions, identifying such agents has been difficult. To achieve the latter, our lab screened more than 35,000 compounds for their capacity to reduce the activity of BTIC-enriched mouse mammary tumorspheres, wherein we identified numerous antagonists of multiple serotonin receptors (HTRs). The serotonergic antagonist that prevented sphere formation with the highest potency is a highly selective antagonist of HTR5A, SB-699551. We subsequently demonstrated that this agent affects BTIC activity in breast tumor cell lines representative of all clinical and molecular subtypes of breast cancer. Whereas the primary target of SB-699551 is known, the downstream signaling pathways responsible for its anti-BTIC effect remains enigmatic. The goal of this thesis work was to elucidate the signaling pathways downstream of HTR5A in human breast tumor cell lines. We used a phospho-proteomic approach to establish that treatment of human SB-699551 affects the phosphorylation of proteins involved in the Gi-coupled and the PI3K/AKT/mTOR signaling axes. Moreover, we demonstrated that selective antagonists of PI3K, AKT, and mTOR phenocopied the effect of SB-699551 in tumorsphere forming assays. Taken together, our data suggests that SB-699551 elicits its effect through the PI3K/AKT/mTOR signaling pathways downstream of HTR5A.
URI: http://hdl.handle.net/11375/24743
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Shakeel_Mirza_S_2019August_MasterofHealthSciences.pdf
Access is allowed from: 2020-09-01
Masters Thesis1.47 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue