Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24653
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGarside, B. K.-
dc.contributor.advisorJessop, P. E.-
dc.contributor.authorWang, Tin-Yu-
dc.date.accessioned2019-07-25T18:15:43Z-
dc.date.available2019-07-25T18:15:43Z-
dc.date.issued1988-04-
dc.identifier.urihttp://hdl.handle.net/11375/24653-
dc.description.abstractThe work described in this thesis involves the measurements of the optical gain and amplified spontaneous emission (A.S.E) spectrum of Pb1-xSnxTe epilayers and the establishment of conditions under which optically pumped Pb1-xSnxTe laser using a CO2 laser as pump source can be produced. Pb1-xSnxTe epilayers have been grown by a hot wall epitaxy (HWE) technique on BaF2 single crystal substrates and the optical gain which can be produced in these layers has been measured by pumping the films transversely with a N2 laser. A model for optical gain and stimulated emission as a function of pump intensity has been developed which has permitted for the first time in these materials, a direct comparison between the magnitude of the gain pumping rate, and the optical gain generated. The measured optical gain is in very good agreement with the model predicted gain. Good fits to the measured stimulated emission spectra were also obtained from the model prediction. It is shown that the gain for a given pump wavelength has a drastic dependence on the material doping density. According to the model, CO2 laser optically pumped Pb1-xSnxTe laser can be readily achieved, provided that epilayer doping densities can be reduced to values of 1017 cm-3 or less. Nevertheless, doping densities even in nominally undoped layers are generally at least an order of magnitude too high. In some initial attempts to achieve lower doping densities, using a thermal annealing technique, doping densities as low as 2 x 10 17 cm-3 have been obtained and significant pump absorption was achieved at CO2 laser wavelength, as predicted by the model.en_US
dc.language.isoenen_US
dc.subjectoptical gainen_US
dc.subjectamplified spontaneous emissionen_US
dc.subjectlead salt semiconductoren_US
dc.subjectthin film waveguidesen_US
dc.titleOptical Gain and Amplified Spontaneous Emission in Lead Salt Semiconductor Thin Film Waveguidesen_US
dc.typeThesisen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
wang_tin-yu_1988Apr_masters.pdf
Open Access
2.42 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue