Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24614
Title: The Effect of Hinged Ankle Foot Orthoses on the Oxygen Cost of Walking in Children with Spastic Diplegic Cerebral Palsy
Other Titles: AFO and the Oxygen Cost of Walking in Cerebral Palsy
Authors: Maltais, Désirée
Advisor: Bar-Or, Oded
Department: Human Biodynamics
Keywords: hinged ankle foot orthoses;oxygen cost;spastic diplegic cerebral palsy;cerebral palsy;oxygen cost of walking;children;human biodynamics;orthoses;ankle foot orthoses;AFO
Publication Date: Dec-1997
Abstract: Children with cerebral palsy (CP) have a higher than normal O2 uptake (VO2) during walking. While various interventions are used to improve locomotion, little is known about their effect on the metabolic and cardiopulmonary cost of walking. We therefore assessed the effects of one popular intervention, hinged ankle foot orthoses (AFO), on cardiopulmonary and metabolic variables during 2 min of steady state treadmill walking at three speeds: 3 kph, comfortable walking speed (CWS) and fast walking speed (FWS). We also assessed the effect of these braces on comfortable and maximum ground walking speed and on gross motor abilities using the Gross Motor Function Measure. Ten children with spastic diplegic CP (9.01 years ± 2.10) who habitually used hinged AFO participated. Not all children could walk at all speeds on the treadmill however, and some cardiopulmonary and metabolic data on three children were missing due to equipment failure. We performed an ANOVA on data for children who walked at 3 kph and CWS (n=8 for heart rate (HR); n=9 for pulmonary ventilation and metabolic variables) and a t-test on data at FWS (n=9 for HR, n=8 for pulmonary ventilation and metabolic variables). When children wore AFO, absolute VO2 was reduced by 4.6% at 3 kph and by 4.1% at FWS, and absolute VO2 per metre walked by 4.6% and 4.4% at the same speeds, respectively. Adjusting VO2 for body mass, or for resting VO2 or calculating energy expenditure in kJ, revealed the same pattern. Pulmonary ventilation was lower with AFO on by 7.17%, but only at 3 kph. AFO did not affect gross motor abilities. Nor did it affect HR, or the respiratory exchange ratio at any speed, nor any physiologic variable at CWS. We suggest the lower O2 cost may reflect an increase in stability and a corresponding decrease in coactivation of lower limb antagonistic muscles.
URI: http://hdl.handle.net/11375/24614
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Maltais_Désirée_1997Dec_masters.pdf
Open Access
5.24 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue