Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24207
Title: Dosimetry of Skin-Contact Exposure to Tritium Gas Contaminated Surfaces
Other Titles: Tritium Skin-Contact Dosimetry
Authors: Legare, Michele
Advisor: Horvath, F.
Trivedi, A.
Webber, C. E.
Department: Health and Radiation Physics
Keywords: dosimetry;skin-contact exposure;tritium gas
Publication Date: Jan-1991
Abstract: The radiological hazards from tritium are usually associated with exposure to tritium oxide either by inhalation, ingestion or permeation through skin. However, exposure from skin-contact with tritium gas contaminated surfaces represents a different radiological hazard in tritium removal facilities and future fusion power plants. Previous experiments on humans by Eakins et al. (8), and more recent experiments on hairless rats at Chalk River Laboratories have shown that when a tritium gas-contaminated surface is brought into contact with intact skin, high concentrations of organically-bound tritium in urine and skin are observed which were not seen from single tritiated water (liquid or vapour form) contamination. The results of the rat experiments, which involved measurements of tritium activity in urine and skin, after contact with contaminated stainless steel, are described. These results are also compared to previous data from human experiments. The effect of various exposure conditions and different contaminated surfaces such as brass, aluminum and glass are analysed and related to the results from contaminated stainless steel exposure. Dosimetric models are being developed in order to improve the basis for dose assessment for this mode of tritium uptake. The presently studied model is explained along with the assumptions and methods involved in its derivation. The features of 'STELLA', the software program used to implement the model, are discussed. The methods used to estimate skin and whole body dose from a model are demonstrated. Finally, some experiments for improving the accuracy of the model are proposed. Briefly, this study compares the results from animal and human experiments as well as different exposure conditions, and determine the range of whole body and skin dose that may be involved from skin-contact intake. This information is essential for regulatory purposes particularly in the derivation of doses for skin-contact contamination.
URI: http://hdl.handle.net/11375/24207
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
legare_michele_1991Jan_masters.pdf
Open Access
10.79 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue