Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24204
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPatterson, M. S.-
dc.contributor.authorMadsen, Steen-
dc.date.accessioned2019-04-02T12:51:23Z-
dc.date.available2019-04-02T12:51:23Z-
dc.date.issued1988-07-
dc.identifier.urihttp://hdl.handle.net/11375/24204-
dc.description.abstractPhotodynamic therapy (PDT) is a form of local cancer treatment in which cell death is caused by photochemical reactions involving an exogenous photosensitizer. The photosensitizer, which is preferentially retained in malignant tissues, is photoactivated and cell death results from the generation of reactive products -most likely excited molecular (singlet) oxygen. The development of in vivo PDT dosimetry would be greatly aided by the ability to directly measure the local concentration of this product by non-invasive means. In condensed media singlet oxygen will, with some small probability, undergo a radiative transition to the ground state with emission at 1270 nm. This infrared phosphorescence may provide a means for monitoring the production of singlet oxygen in vivo. Unfortunately the background infrared fluorescence observed from tissue may be many times the expected magnitude of the 1270 nm phosphorescence, even within the bandwidth encompassing the peak. The principal aim of this project was the design of a system optimized for the in vivo detection of the singlet oxygen emission. The system makes use of the most sensitive commercially available detector and uses phase sensitive detection to discriminate against infrared fluorescence. The system's performance matched theoretical expectations for the photosensitizer Photofrin II in aqueous and methanol solutions. However, a discrepancy in the observed and theoretical values was noted for aluminum chlorosulphonated phthalocyanine suggesting a deviation from simple first order kinetics. Singlet oxygen phosphorescence was not observed during PDT of cell suspensions or mouse tumours even though considerable cell death and tumour necrosis were observed. The most likely explanation of this failure is that, due to quenching by biomolecules, the lifetime of singlet oxygen in cells or tissue is much lower than in solution so that the probability of emission is reduced accordingly. Quantitative calibration of the system yielded a lower limit of approximately 0.1 us on the singlet oxygen lifetime in tissue. This suggests that singlet oxygen is generated in a protein environment.en_US
dc.language.isoenen_US
dc.subjectremote electro-optical techniqueen_US
dc.subjectsinglet oxygen generationen_US
dc.subjectphotodynamic therapyen_US
dc.subjectradiation physicsen_US
dc.subjectcanceren_US
dc.subjectcancer treatmenten_US
dc.titleA Remote Electro-Optical Technique for Monitoring Singlet Oxygen Generation During Photodynamic Therapyen_US
dc.title.alternativeRemote Electro-Optical Detection of Singlet Oxygen in Vivoen_US
dc.typeThesisen_US
dc.contributor.departmentHealth and Radiation Physicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MS)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
madsen_steen_j_1988Jul_masters.pdf
Open Access
5.77 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue