Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24163
Title: Fully Integrated Electrochemical Sensor Based on Surface Activated Copper/Polymer Bonding for Lead Detection
Authors: Redhwan, Md Taufique Zaman
Advisor: Haddara, Yaser M.
Howlader, Matiar M. R.
Department: Electrical and Computer Engineering
Keywords: surface activated bonding;lead detection;electrochemical sensor;fully integrated;water quality monitoring;copper;polymer;environmental sensor
Publication Date: Nov-2018
Abstract: Lead (Pb) levels in tap water below the established water safety guideline are now considered harmful, thus detecting sub-parts-per-billion level Pb is important. This thesis reports on a miniaturized Copper (Cu)−based electrochemical sensor fabricated from thick film electrodes for their superior sensing performance. These thick film electrodes are based on highly conductive rolled-annealed Cu foil that has a compact bulk structure, but these advantages are often offset by the fact that RA Cu foil is difficult to bond to a substrate due to poor film-adhesion property and lack of mechanical interlocks. For this reason, we develop a direct bonding process for Cu/polymer. An integrated three-electrode planar configuration is then fabricated on the bonded specimen to achieve a fully-functional sensor that can detect 0.2 μg/L (0.2 ppb) Pb2+ ions from a 100 μL sample in only 30 s. This is the most rapid detection of Pb featured to date by an all Cu-based sensor. This thesis first focuses on improving substrate adhesion of RA Cu foil to liquid crystal polymer (LCP). This is achieved by a surface activated bonding process where Cu and LCP surfaces are treated with low-power reactive ion etching oxygen plasma followed by low-pressure contact at 230 °C. This treatment produces hydroxyl (OH−) groups on Cu and LCP surfaces making them highly hydrophilic. When Cu and LCP are contacted and heated, the OH− chains condense by dehydration and form an intermediate oxide layer. This layer mainly develops as Cu2O nanoparticles from the plasma-treated Cu side due to thermal oxidation in air. These nanoparticles diffuse into the polymer substrate when heated under mechanical pressure, resulting in a strongly bonded flexible specimen for the sensor. A simple, inexpensive, and production-friendly fabrication process is then developed for these sensors. Following direct bonding, flexible Cu/LCP is fed into a LaserJet printer for a one-step transfer of polyester resin−based electrode mask on Cu. This is followed by etching, packaging, and a chlorinating process to achieve a fully-functional integrated sensor. The sensing performance of directly bonded Cu/LCP is comparable to that of commercially available Cu/polyimide (PI) laminate. Our approach holds promise towards realizing low-cost integrated water quality monitoring systems.
URI: http://hdl.handle.net/11375/24163
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Redhwan_MdTaufiqueZaman_201809_MASc.pdf
Open Access
Masters thesis of Taufique Zaman Redhwan (McMaster University)3.21 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue