Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24146
Title: New Roles for PagP in the Bacterial Outer Membrane Stress Response
Other Titles: The Multifunctional Enzymology of PagP
Authors: Dixon, Charneal Latoye
Advisor: Bishop, Russell
Department: Biochemistry and Biomedical Sciences
Keywords: PagP;Lipids;Membranes;Bacteria
Publication Date: 22-Nov-2018
Abstract: The ability of Gram-negative bacteria to modulate outer membrane (OM) composition in response to stressful environments is essential for their survival and replication within host tissues. The OM enzyme PagP catalyzes the transfer of palmitate from a glycerophospholipid to lipid A. Lipid A is the endotoxic portion of LPS responsible for transmembrane signalling to initiate the immune response. Palmitoylation of lipid A can either attenuate or stimulate the immune response depending on where the palmitate chain is attached to a specific lipid A molecule. Here we report that the Escherichia coli PagP homolog is a multifunctional enzyme, which displays two distinct active sites exposed on either side of the bacterial OM. E. coli PagP converts phosphatidylglycerol (PG) to palmitoyl-PG (PPG) using the same cell surface active site involved in the palmitoylation of lipid A. PPG is then serially degraded to bis(monoacylglycero)phosphate (BMP) and either lyso-PG or lyso-BMP by a novel lipase active site located in PagP on the periplasmic side of the OM. The periplasmic lipase active site can be inactivated with the Y87F amino acid substitution. BMP is a novel glycerophosphoglycerol (GPG) that has not previously been reported in bacterial lipid metabolism. Not all PagP homologs have this ability to remodel GPGs. We have identified a divergent lipid A palmitoyltransferase in Pseudomonas aeruginosa that does not palmitoylate PG. The P. aeruginosa homolog also has different lipid A regiospecificity, adding palmitate on the opposite glucosamine at the 3’-position compared to the 2-position of the proximal sugar observed for the E. coli homolog. We have determined that P. aeruginosa PagP is representative of a distinct clade of PagP evolved to fulfill different functions. Although this minor clade is inclusive of homologs that lack obvious sequence similarity with the major clade enterobacterial PagP, we have identified conserved catalytic and structural elements within the minor clade that contribute to our growing understanding of homologous PagP structure/function relationships. A comparative analysis of all available sequences of minor clade PagP homologs has revealed invariant His, Ser, and Tyr residues that are necessary for catalysis. Additionally, a 4-amino acid conserved signature indel or CSI is unique to bacteria clustered phylogenetically within the γ-subclass of Proteobacteria.
URI: http://hdl.handle.net/11375/24146
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
DIXON_CHARNEAL_L_201809_PhD.pdf
Access is allowed from: 2019-09-28
101.93 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue