Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24058
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSaravanamuttu, Kalaichelvi-
dc.contributor.authorHudson, Alexander David-
dc.date.accessioned2019-03-21T13:10:01Z-
dc.date.available2019-03-21T13:10:01Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11375/24058-
dc.description.abstractNonlinear optical processes have been used for many years to cause light to behave in unique ways. These can influence various aspects of the light beams, including the spatial intensity profile. More specifically, a naturally divergent beam can maintain its initial beam profile when propagating through a nonlinear medium due to the increased refractive index causing focusing. This process is called self-trapping and can be elicited for both coherent and incoherent light in a number of nonlinear media. Analogous to this, modulation instability (MI) is a nonlinear process that causes a broad beam of light of break up into a large population of self-trapped filaments. When these processes occur in photopolymers, light guiding structures are inscribed within the material and persist even after the light is removed. Our group has previously studied the behaviour and interactions of light undergoing self-trapping and MI in photopolymer systems. The studies presented in this thesis show novel interactions between multiple incoherent beams undergoing MI, utilization of these interactions, as well as the development of new polymeric systems capable of inducing MI. The filaments produced when orthogonal beams underwent simultaneous MI would align with themselves, forming highly ordered structures within the material. These interactions were used as the basis of an encoding and computing system based on the specific ordering of the resulting filaments. The mechanical properties of the resulting polymers were improved and tuned by developing a long-chain organosiloxane based system. The embedded waveguide structures are capable of guiding light when significantly deformed and restore to their initial parameters. A hydrogel system was also developed that was capable of producing self-trapping and MI with incoherent light. The samples were tested with biological systems and were also used to produce dynamic lens samples with enhanced angle of view.en_US
dc.language.isoenen_US
dc.subjectNonlinear opticsen_US
dc.subjectPhotopolymersen_US
dc.titleSelf-Inscribed Waveguide Arrays In Soft Photopolymers: From Dynamic Lenses To Materials That Compute With Light Filamentsen_US
dc.typeThesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
hudson_alexander_d_finalsubmission2018sept_phd.pdf
Access is allowed from: 2019-09-10
198.91 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue