Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24021
Title: The use of fluorescently labeled nanoparticles as therapeutic virus surrogates in sterile filtration studies
Authors: Pazouki, Mohammadreza
Advisor: Latulippe, David
Department: Chemical Engineering
Keywords: Nanoparticles;Surrogates;Microfiltration;Sterile filtration
Publication Date: 2018
Abstract: Nanoparticles (NPs) have attracted considerable attention in the field of separation science, especially in filtration studies for direct membrane integrity tests, investigating pore-size distribution, and their potential to be used as surrogates for various types of viruses encountered in water treatment and bioprocessing applications. Although the effect of adding surfactants to stabilize NP suspension have been explored for a number of different applications, there is significant variation in the amounts and types of surfactants used in filtration studies. This study used three different sizes (59, 188, and 490 nm) of fluorescent polystyrene nanoparticles (PNPs) to mimic the length, width, and aggregates of Rhabdovirus Maraba, a bullet-shape envelope virus. The PNPs were suspended in solutions with varying concentrations of the nonionic surfactant Tween 20 (0.0005% to 0.1% (v/v) in the carbonate buffer feed solution) and were tested in constant-flux filtration studies using two commercial microfiltration (MF) membranes (Durapore PVDF and MiniSart PES) with 0.22 micron pore size ratings. Results clearly demonstrate that adding a nonionic surfactant to a PNP solution will cause a shift from full retention to complete transmission during the dead-end MF of PNPs that are smaller than the pore size of an MF membrane. In a separate study, in order to have a better resemblance of virus particles in terms of surface properties, 188 nm PNPs were coated with different (lysozyme, α -lactalbumin and bovine serum albumin) proteins in order to gain similar surface properties to actual virus particles. Filtration results with one type of commercial MF membranes (Durapore PVDF) 0.22 μm pore size, clearly indicate that the transmission behavior of PNPs strongly depends on their surface properties. PNPs fully covered with BSA and α–lactalbumin could completely pass through the membranes while uncovered or partially covered PNPs resulted in no transmission or partial transmission.
URI: http://hdl.handle.net/11375/24021
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Pazouki_Mohammadreza_finalsubmission2018December_MASc.pdf
Access is allowed from: 2019-12-20
4.43 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue