Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23602
Title: Basic Fibroblast Growth Factor (FGF-2) Delivery From Heparin Modified Surfaces for Artificial Cornea Applications
Other Titles: FGF-2 Delivery from Heparinized PDMS and Collagen Materials
Authors: Princz, Marta A.
Advisor: Sheardown, Dr. H.
Department: Chemical Engineering
Keywords: basic fibroblast growth factor;heparin modified materials;artificial cornea applications
Publication Date: Sep-2006
Abstract: Device anchoring of artificial cornea implants, through tissue integration of stromal tissue, is necessary to ensure long-term success. In this work, the delivery of basic fibroblast growth factor (FGF-2), a key modulator in corneal wound healing, via heparin modified materials was investigated as a means of sustained, soluble growth factor delivery for stimulation of device anchorage. Two materials types, commonly used for ophthalmic applications and currently under investigation for use in artificial cornea applications, were utilized. Poly (dimethyl siloxane) (PDMS) is currently under investigation as the base material for keratoprosthetic devices; dendrimer crosslinked collagen has been examined as the basis for use as a tissue engineered corneal equivalent. PDMS surfaces were modified directly or indirectly, through a poly (ethylene oxide) (PEO) spacer, to contain functionalized reactive NSC groups capable of binding heparin and FGF-2 Surface modifications were characterized with attenuated total reflection Fourier transform infrared spectrophotometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angles. Heparin coverage was assessed with metachromatic and bioactivity assays. Heparinized collagen gels were crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS) and polypropyleneimine octaamine G2 dendrimers. Gel integrity was assessed with water uptake, differential sr::anning calorimetry, and heparin and dendrimer stability. Both materials were exposed to radiolabelled FGF-2 and growth factor immobilization and delivery were quantified. Heparinized PDMS surfaces were capable of binding on average 100 ng/cm2 ofFGF-2, while heparinized collagen gels had higher FGF-2 immobilization, 300 ng, likely attributed to their higher heparin densities and the fact that the bulk gel rather than the surface only was modified. Delivery of FGF-2 from the heparinized materials revealed a first order release profile, with an initial burst of FGF-2, followed by gradual growth factor release. Release rates, over a 2 week period, reached 6.5% and 50%, for 1 day and 3 day FGF-2 exposed heparinized PDMS modified surfaces, while hepruinized dendrimer crosslinked collagen gels released 40%.
URI: http://hdl.handle.net/11375/23602
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
princz_marta_a_sep2006_masters.pdf
Open Access
7.35 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue