Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23597
Title: Characterization of a Herpes Simplex Virus T Cell Immune Evasion Strategy
Authors: Jugovic, Pieter
Advisor: Johnson, David
Department: Biology
Keywords: herpes simplex virus;herpes;t cell;immune evasion strategy;immune
Publication Date: May-1997
Abstract: Herpes simplex virus (HSV) infections are common in all human populations and for most people they represent relatively mild lifelong infections. To facilitate the persistent infection of hosts, HSV has evolved immune evasion strategies which suppress various aspects of the immune response including the actions of complement and antibodies. Previously in our laboratory, an HSV immediate early protein called ICP47 was shown to inhibit the MHC class I antigen presentation pathway and thereby block recognition of virus infected cells by CD8+ cytotoxic T lymphocytes (CTL). This thesis explores the potential cellular targets of ICP47. Using immunoprecipitation I found ICP47 associates with the transporter associated with antigen presentation (TAP). By blocking the transport of peptide antigens into the endoplasmic reticulum, MHC class I molecules become unstable and are subsequently degraded before displaying HSV antigens on the cell surface. Thus, CTL destruction of cells infected with HSV is blocked. In addition, an interaction between an ICP47 bacterial fusion protein, called GSTICP47-1 and a cellular protein, calcyclin, was examined. The functions of calcyclin are largely unknown. However, based on its association with ICP47, it was possible that calcyclin might play a role in the class I pathway -perhaps as the peptide shuttle. Nevertheless, the results of several experiments were consistent with the notion that calcyclin and ICP47 may not interact in vivo and that calcyclin may not play a role in the MHC class I antigen presentation pathway.
URI: http://hdl.handle.net/11375/23597
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
jugovic_pieter_j_1997May_masters.pdf
Open Access
14.9 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue