Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23416
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorO'Donnell, Michael-
dc.contributor.authorBrowne, Austin-
dc.date.accessioned2018-10-19T19:10:40Z-
dc.date.available2018-10-19T19:10:40Z-
dc.date.issued2018-07-19-
dc.identifier.urihttp://hdl.handle.net/11375/23416-
dc.description.abstractInsects maintain blood (haemolymph) Ca2+ concentrations within a narrow range in order to support the health of internal tissues and organs. The Malpighian (renal) tubules play a primary role in haemolymph Ca2+ homeostasis by sequestering excess Ca2+ within calcified biomineral deposits (Ca-rich granules) often located within type I (principal) tubule cells. Using the classic Ramsay assay, the scanning ion-selective microelectrode technique (SIET), and modifications of these two electrophysiological techniques, this thesis begins to unravel the sites and mechanisms of Ca2+ transport by the Malpighian tubules isolated from eight insects, representing seven orders. A segment-specific pattern of Ca2+ flux was observed along the length of the Malpighian tubules isolated from D. melanogaster, A. aegypti and A. domesticus and was uniform along the length in the remaining species. The majority (≥ 90%) of Ca2+ entering the tubule cells is sequestered within intracellular calcium stores in Ca2+-transporting segments of D. melanogaster and A. domesticus tubules, consistent with the presence of Ca-rich storage granules in these tubule segments. In addition, this thesis provides the first measurements of basolateral Ca2+ flux across single principal and secondary tubule cells of T. ni, where Ca2+ uptake occurs only across principal cells. Perhaps the most important finding of this thesis is that increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca2+ in isolated tubules of A. domesticus had opposite effects on tubule Ca2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. In contrast, tubules of the remaining species were generally insensitive to cAMP or thapsigargin and v rates of tubule Ca2+ transport were often very low. The presence of Ca-rich granules in the cells of the midgut in several of the species with low rates of tubule Ca2+ transport provide evidence for a putative role of the midgut in haemolymph Ca2+ homeostasis. Taken together, these results suggest that the principal cells of the Malpighian tubules contribute to haemolymph calcium homeostasis through neuroendocrine regulated sequestration of excess Ca2+ during periods of high dietary calcium intake. Sequestration of dietary Ca2+ by the midgut may reduce Ca2+ entry into the haemolymph and therefore Ca2+ sequestration by the Malpighian tubules need not be so rapid. Finally, reversible tubule Ca2+ transport may allow internal reserves of Ca2+ (Ca-rich granules) to be returned to the haemolymph allowing insects to survive prolong periods of Ca2+ deficiency (i.e. overwintering).en_US
dc.language.isoenen_US
dc.subjectcalciumen_US
dc.subjectMalpighianen_US
dc.subjecttransporten_US
dc.subjecttubuleen_US
dc.subjectDrosophilaen_US
dc.subjectflyen_US
dc.subjectAchetaen_US
dc.subjectcricketen_US
dc.subjectAedesen_US
dc.subjectmosquitoen_US
dc.subjectCa2+en_US
dc.subjectinsecten_US
dc.subjecthomeostasisen_US
dc.subjecthaemolymphen_US
dc.subjectSIETen_US
dc.subjectelectrophysiologyen_US
dc.subjectRamsayen_US
dc.subjecttranscellularen_US
dc.subjectchannelen_US
dc.subjectconcretionen_US
dc.subjectgranuleen_US
dc.subjectCa-richen_US
dc.subjectspheriteen_US
dc.subjectionoregulationen_US
dc.titleCALCIUM TRANSPORT BY INSECT MALPIGHIAN TUBULESen_US
dc.typeThesisen_US
dc.contributor.departmentBiologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractThis thesis contributes to our understanding of how insects regulate the calcium content of their blood (haemolymph). Using electrophysiological techniques with improved spatial resolution (from millimeters to micrometers) this thesis sought to determine the sites, mechanisms and regulation of Ca2+ transport by insect Malpighian (renal) tubules in order to gain insights into the role of Ca-rich granules (similar to those identified in early stages of human kidney stone formation i.e. nephrolithiasis) within these tissues. Using eight insect species this thesis demonstrates that the Malpighian tubules act as dynamic Ca2+ stores that appear to be under neuroendocrine control: actively taking up Ca2+ through calcium entry channels, where the majority (≥ 90%) of excess haemolymph Ca2+ is sequestered within intracellular stores (Ca-rich granules) during period of excess dietary calcium and passively releasing Ca2+ back to the haemolymph during periods of metamorphosis or calcium deficiency (i.e. overwintering).en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Browne_Austin_A_201807_PhD.pdf
Open Access
2.74 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue