Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23392
Title: Group 2 Innate Lymphoid Cells are Increased in Patients with Moderate-To-Severe Atopic Dermatitis
Authors: Krisna, Sai Sakktee
Advisor: Sehmi, Roma
Department: Medical Sciences
Keywords: Innate Lymphoid Cells;ILC2;Atopic Dermatitis;Group 2 Innate Lymphoid Cells
Publication Date: 2018
Abstract: Introduction: Atopic dermatitis (AD) is characterized by chronic pruritic relapsing eczematous lesions of the skin. Eosinophilic inflammation in AD is driven by activation of type 2 inflammatory cells including CD4+ T cells and type 2 innate lymphoid cells (ILC2s). We have shown that type 2 cytokines, namely interleukin (IL)-5 and IL-13, stimulate migration and terminal differentiation of eosinophil progenitor cells (EoPs). We propose that these cytokines are important drivers of tissue eosinophilia in AD lesional skin. This study aimed to quantify, by flow cytometry, cells that produce type 2 cytokines in lesional skin compared to peripheral blood from moderate-severe AD patients. Methods: In a cross-sectional study of patients with moderate-to-severe AD (n=16), type 2 inflammatory cells were enumerated in blood and cells extracted from excised skin biopsies. By flow cytometry, live, singlet CD45+cells were identified as ILC2 (lin-CD127+CD294+), EoP (CD34+125+), and CD4+ T cells (Lin+CD3+CD4+). Intracellular expression of type 2 cytokines (IL-5 and IL-13) were evaluated in each cell population. In addition, we developed a protocol to enumerate ILC2s by fluorescence immune-histochemistry in lesional versus non-lesional skin samples and skin biopsies taken 24h post-intradermal challenge with allergen versus diluent. Data are expressed as median (interquartile range [IQR]) unless otherwise stated. Cross compartmental comparisons were made using the Wilcoxon rank-sum test and where applicable, correlational analyses were performed using a Spearman’s rank-correlational test. Results: There was a significantly higher number of total ILC2s in lesional skin compared to blood from AD subjects (556 [99 – 5501] vs 235 [67 – 569] cells/mL, p=0.03). Similarly, IL-5+, IL-13+ ILC2s, were significantly greater in skin compared to blood (6 [1 – 666] vs 1 [1 – 19] cells/mL, p=0.03; 28 [1 – 1357] vs 1 [1 – 7] cells/mL, p=0.01, respectively). We found higher numbers of total and type 2 cytokine positive EoP in lesional skin biopsies from AD patients compared to blood (Total EoP: 815 [285 – 2794] vs 112 [46 – 247] cells/mL, p<0.01; IL-5+EoP: 36 [1 – 129] vs 1 [1 – 23] cells/mL, p=0.07; IL-13+EoP: 92 [10 – 182] vs 1 [1 – 8] cells/mL, p<0.01 and IL-5+IL-13+ILC2: 70 [1 – 158] vs 1 [1 – 12] cells/mL, p=0.02, respectively). In contrast, significantly higher numbers of total and type 2 cytokine positive CD4+ cells were found in blood compared to lesional skin biopsies from AD patients (Total CD4+: 1092 [650 – 1742] vs 58.3 [35.3– 152.4] x 103 cells/mL, p<0.01 and IL-5+IL-13+CD4+ cells: 13.5 x 103 [2.1 x 103 – 42.9 x 103] vs 3.8 x 103 [1.6 x 103 – 4.9 x 103] cells/mL, p=0.02, respectively). For IF staining, there was a significant higher number of ILC2s in lesional compared to non-lesional skin biopsies and biopsies taken 24h post allergen- compared to diluent challenge (1 [0 – 2] vs 0 [0 - 0] cells/mm2, p=0.008, and 2 [1 – 2] vs 0 [0 – 0] cells/mm2, p=0.0002, respectively). Interestingly, in sex analyses we found significantly greater levels of blood ILC2 in females compared to males, but this not was found in the skin. Importantly, we found a significant correlation between lesional skin levels of ILC2 measured by flow cytometry and clinical measures of disease severity/symptoms as reported/calculated from the Patient-Oriented Eczema Measure questionnaire (POEM) score (total ILC2: r=0.55, p=0.04; IL-13+ ILC2s, r=0.61, p=0.02 and IL-5+ IL-13+ ILC2s: r=0.75, p=0.002). Conclusions: Preferential increases in skin-resident ILC2 that produce a type 2 rich environment were found in AD subjects. These levels correlated with patient-oriented measure of disease severity. We propose that this increase may encourage recruitment of mature eosinophils and EoP and possibly drive localized differentiation of EoP into mature eosinophils that may drive the pathology of AD lesions. Furthermore, immunofluorescence staining may be a suitable alternative to flow cytometry for identification of ILC2 in the event of a low cell count. These techniques can be used in future studies that target ILC2 biology to fully understand the role of these cells in driving AD.
URI: http://hdl.handle.net/11375/23392
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Krisna_Sai Sakktee_FinalSubmission2018August_MSc.pdf
Access is allowed from: 2019-08-01
2.07 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue