Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23386
Title: Dynamically-Crosslinked Self-Assembled Smart Microgels for Drug Delivery
Authors: Mueller, Eva
Advisor: Hoare, Todd
Department: Chemical Engineering
Keywords: drug delivery;microgels;polymers;self-assembly
Publication Date: 2018
Abstract: Microgels, colloidal networks of crosslinked water-soluble polymers with dimensions < 1 μm, have been demonstrated to be useful materials in a wide range of biomedical and environmental applications. In particular, temperature-responsive microgels based on poly(N- isopropylacrylamide) (PNIPAM) have attracted significant research interest in drug delivery applications. However, conventional precipitation-based PNIPAM microgels are functionally non-degradable, problematic for biomedical applications. To resolve this issue, a thermally- driven self-assembly approach based on hydrazide and aldehyde functionalized PNIPAM oligomers to form an acid-labile hydrazone bond was developed in the Hoare Lab to produce thermoresponsive, colloidally stable, monodisperse and degradable microgels. In this thesis, the internal structure of these self-assembled microgels was investigated using small and ultra-small angle neutron scattering and surface force experiments. Contrary to expectations based on the assembly technique, all these characterization strategies suggested that self-assembled microgels have a homogeneously cross-linked internal structure. It is anticipated that these well-defined degradable and homogeneous nanoscale gel networks offer opportunities for addressing challenges in drug delivery, biosensing, and optics by exploiting the predictable diffusive and refractive properties of the homogeneous microgel networks. In addition, the co-self-assembly of a moderately hydrophobic anti-inflammatory drug (dexamethasone) during the microgel self-assembly process was demonstrated to enable five-fold higher drug encapsulation (75-80%) relative to the conventional partition/diffusion- based drug loading processes. This result addresses a key challenge in delivering hydrophobic drugs using conventional precipitation-based microgel systems due to the inherent hydrophilicity of the crosslinked network. The potential of the self-assembly approach to fabricate multi-responsive smart microgels was demonstrated by incorporating pH-ionizable functional groups (via the copolymerization of acrylic acid and 2-dimethylaminoethylmethacrylate to introduce anionic and cationic charges respectively) into the hydrazide and aldehyde-functionalized precursor polymers prior to self-assembly. The self-assembled charged microgels showed the same pH- responsive swelling behaviours of conventional microgels, including amphoteric microgels that can be formed at any desired cationic:anionic charge density by simply mixing different ratios of cationic and anionic precursor polymers. Such microgels offer significant potential to improve the performance of microgels in applications demanding dual pH/temperature specific drug delivery.
URI: http://hdl.handle.net/11375/23386
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Mueller_Eva_FinalSubmission2018July_MASc.pdf
Access is allowed from: 2019-07-04
2.6 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue