Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23359
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPatterson, M. S.-
dc.contributor.authorMoulton, John-
dc.date.accessioned2018-09-26T18:25:48Z-
dc.date.available2018-09-26T18:25:48Z-
dc.date.issued1990-08-
dc.identifier.urihttp://hdl.handle.net/11375/23359-
dc.description.abstractThe increasing use of visible and near infrared light in therapeutic and diagnostic techniques has created a need to model its propagation in tissue. One of the fundamental objectives of such a model is the noninvasive evaluation of the optical properties of tissue. The focus of this thesis was the development of the diffusion approximation in the semi-infinite, slab, cylindrical and spherical geometries. This development required the derivation of approximate boundary conditions which included the zero, extrapolated and partial current boundary conditions. Calculations of the fluence and its related quantities arising from the extrapolated boundary condition were found to be in excellent agreement with the results of the more rigorous partial current boundary condition. A preliminary evaluation of the validity of diffusion theory was performed by comparing its predictions to exact analytical calculations of the fluence in an infinite medium as well as Monte Carlo simulations of the reflectance and transmittance in 1-dimensional planar geometries. In all cases the agreement at late times was excellent. A practical test of the diffusion model was accomplished with the analysis of the reflectance data from a phantom of known optical properties in both the semi-infinite and slab geometries. The model performed well at low concentrations of added absorber, but a considerable discrepancy was found at the highest concentration. A systematic examination of the accuracy of the diffusion model as a function of the fundamental parameters is required to resolve this inconsistency. Approximate expressions describing the equivalent information in the frequency domain were also developed for a semi-infinite medium. These expressions were then used to analyze the phase and modulation obtained from phantoms of known optical properties. Once again reasonable results were obtained at low concentrations of added absorber while a significant discrepancy arose at the highest concentration. The resolution of these discrepancies requires further investigation.en_US
dc.language.isoenen_US
dc.subjectdiffusion modelen_US
dc.subjectpicosecond laser pulseen_US
dc.subjectturbid mediaen_US
dc.titleDiffusion Modelling of Picosecond Laser Pulse Propagation in Turbid Mediaen_US
dc.title.alternativeDiffusion Modelling of Light Propagation in Turbid Mediaen_US
dc.typeThesisen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
moulton_john_d_1990Aug_masters.pdf
Open Access
32.72 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue