Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23262
Title: Study of Rheological Properties of Biodegradable Polyesters
Authors: Kanev, Damyan
Advisor: Vlachopoulos, John
Department: Chemical Engineering
Keywords: rheology;properties;biodegradable;polyester
Publication Date: Jan-2007
Abstract: Biodegradable polyesters are considered as one of the most cost effective and environmentally friendly solutions to waste-disposal problems associated with traditional thermoplastics. The technologies for converting the resins into useful items require knowledge about the rheological properties of these materials. Adequate rheological models are essential for the design and optimization of the process technologies. Rheological properties of two commercial biodegradable polyesters- poly(lactic acid) (PLA) and aliphatic-aromatic co-polyester (AAC) Ecoflex -have been investigated using parallel plate and capillary rheometers. Results from a study on the extrusion instabilities of biodegradable polymers are reported for the first time. The experimental studies found that the biodegradable polyesters exhibit pseudoplastic (shear-thinning) behaviour and the Cox-Merz rule is obeyed. A Cross model was proposed to describe their shear-thinning behaviour. The viscosity of both PLA grades is more temperature sensitive than the viscosity of Ecoflex. It was observed that the extensional viscosity of Ecoflex is larger than that of PLA and that the extensional viscosity of biodegradable polymers is similar to that of LLDPE. The experimental results indicate that biodegradable polymer melts slip at the die wall. It was observed that with increasing shear rate PLA exhibits sharkskin and gross melt fracture while Ecoflex exhibits only gross melt fracture. With regards to flow instabilities PLA behaves like linear polyolefins, however without exhibiting stick-spurt phenomenon. While Ecoflex behaves like branched LDPE, its gross melt fracture starts at higher values of wall shear stress than LDPE. Both biodegradable materials exhibit small extrudate swell: up to 28% for PLA and up to 34% for Ecoflex, which is comparable to that of rigid PVC. It was observed that biodegradable polymers substantially degrade during extrusion processing. It was also found that blending PLA and Ecoflex produced immiscible blends. Melts of these blends exhibited sharkskin and gross melt fracture at higher shear stresses than the neat resins. This effect was attributed both to degradation during blending and to some sort of lubricating effect.
URI: http://hdl.handle.net/11375/23262
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
kanev_damyan_2007Jan_masters.pdf
Open Access
11.62 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue