Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23238
Title: Experimental Study of the Behaviour and Strength of Deep Concrete Beams Reinforced with CFRP Bars
Authors: Zeididouzandeh, Mohammadreza
Advisor: Razaqpur, A.
Department: Civil Engineering
Keywords: behaviour;strength;concrete;deep concrete beam;reinforce;CFRP bar
Publication Date: Oct-2008
Abstract: An experimental program was conducted to investigate the strength and deformations of deep beams reinforced with Carbon Fibre Reinforced Polymer (CFRP) longitudinal and transverse reinforcement. Two groups of beams were tested, with each group comprising three beams. Two of the three beams in each group were reinforced with CFRP bars while the third beam was reinforced with conventional rebars and the latter beam was used as a control specimen. Beams in group 1 had span-to-depth ratio of one, while those in group 2 had a span-to-depth ratio of two. Beams in both groups had height of 900 mm and width of 250 mm. All the beams were simply supported and were tested in four-point bending with the point loads applied at one-third of the span. The test results revealed no significant difference between the behavior of the FRP reinforced beams and the companion control beams. On the other hand due to lack of hooks at the ends of the CFRP bars, and the loss of bond between the CFRP fibres and the sand grains on the surface of the bar, the failure in the CFRP reinforced beams was caused by the loss of anchorage while in the steel reinforced beams, the failure was initiated by the yielding of the longitudinal steel, followed by the crushing of the horizontal compression strut, but the nodal zones did not fail in any of the beams. Consequently, it was concluded that CFRP reinforced deep beams could be designed using the current CSA method for conventional steel reinforced concrete deep beams, provided the anchorage or bond strength of FRP bars could be properly determined. The existing nodal efficiency factors for the CCC nodal zones, as given in the CSA A23.3. standard, could be applied to CFRP reinforced beams while the corresponding factor for the CCT zone may be conservatively assumed to be 0.68. Finally, despite the linear elastic behavior of CFRP reinforcement, deep beams reinforced with CFRP bars could be designed using strut and tie models.
URI: http://hdl.handle.net/11375/23238
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
zeididouzandeh_mohammadreza_2008Oct_masters.pdf
Open Access
52.19 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue