Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23229
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRachubinski, R. A.-
dc.contributor.authorSloots, James-
dc.date.accessioned2018-07-19T17:28:55Z-
dc.date.available2018-07-19T17:28:55Z-
dc.date.issued1993-03-
dc.identifier.urihttp://hdl.handle.net/11375/23229-
dc.description.abstractWe have inestigated the expression of the genes hydratase-dehydrogenase-epimerase (HDE), acyl-CoA oxidase (AOX) and catalase (CATL) of the diploid yeast Candida tropicalis. These genes encode enzymes which are localized to the peroxisome. Expression of each gene was monitored by immunoblot analysis of yeast lysates using antibodies directed against each protein. We demonstrate that carbon sources influence expression of these genes, and do so in a coordinate fashion. We expressed C. tropicalis HDE in Saccharomyces cerevisiae and demonstrate that this trifunctional enzyme can be regulated by S. cerevisiae in a fashion that closely resembles that of C. tropicalis. Expression of constructs containing deletions in the upstream region of the HDE gene allowed us to localize regions responsible for regulating the expression of this gene. Regions were identified that are responsible for both repression by glucose and induction by oleic acid. A glucoseresponsive region lies between nucleotides -466 and -334. An oleic acid-responsive region lies between nucleotides -333 and -281. An additional region controlling derepression by nonfermentable carbon sources is located downstream of nucleotide -281. Comparison of the upstream nucleotide sequences of HDE, AOX and CATL both to each other, and to upstream regions of other oleic acid-responsive genes of C. tropicalis has identified possible consensus nucleotide sequences for glucose-and oleic acid-responsive upstream elements. Since the regulation of the HDE gene in S. cerevisiae closely resembles that of C. tropicalis, this implies that similar mechanisms of transcriptional control operate in both yeasts.en_US
dc.language.isoenen_US
dc.subjectcandida tropicalisen_US
dc.subjectgeneen_US
dc.subjectperoxisomeen_US
dc.subjectyeasten_US
dc.subjectenzymeen_US
dc.titleUpstream Sequences Involved in Regulating the Candida tropicalis Gene Encoding Peroxisomal Trifunctional Enzymeen_US
dc.title.alternativeRegulation of Hydratase-Dehydrogenase-Epimeraseen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistryen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MS)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
sloots_james_a_1993Mar_masters.pdf
Open Access
6.29 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue