Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23221
Title: Differentiation of Recombinant Myoblasts in Alginate Microcapsules
Authors: Bowie, Kelly
Advisor: Chang, P. L.
Department: Biology
Keywords: recombinant;myoblast;alginate;microcapsule
Publication Date: Jun-1997
Abstract: A cost effective approach to the delivery of therapeutic gene products in vivo is to immunoprotect genetically-engineered, universal, non-autologous cells in biocompatible microcapsules before implantation. Myoblasts may be an ideal cell type for encapsulation due to their inherent ability to differentiate into myotubes, thereby eliminating the problem of cell overgrowth within the capsular space. To evaluate the interaction between the differentiation program and the secretory activity of the myoblasts within the microcapsule environment, we transfected C2C12 myoblasts to express human growth hormone and followed their expression of muscle differentiation markers, such as creatine phosphate kinase (CPK) protein and up-regulation of muscle-specific genes (ie. myosin light chains 2 & 1/3, Troponin I slow, Troponin T, myogenin and MyoD1). As the transfected myoblasts were induced to differentiate for up to two weeks, their myogenic index (i.e. the percentage of multinucleate myoblasts) increased from 0 to ~50%. Concomitantly, up-regulation of differentiation marker RNA levels, and as much as a 23-fold increase in CPK activity, were observed. After encapsulation and the induction of differentiation, the myoblasts showed a lag phase of ~3 days before an increase in CPK was observed, although the level of CPK activity increased by as much as 63-fold. The myogenic index of the encapsulated cells remained at zero. The rate of human growth hormone secretion was relatively constant throughout the two-week differentiation period, at an average of 7.78 x 10^-2 ng hGH per hour per (mu)g protein, however, human growth hormone secretion was slightly decreased by about twofold during the differentiation of encapsulated myoblasts. In conclusion, the differentiation of myoblasts into myotubes is retarded after encapsulation while the secretion of a recombinant product is slightly reduced. Further studies are necessary to elucidate the cause of this atypical differentiation pattern such that the proliferation and differentiation of the encapsulated myoblasts may be optimized to provide a stable vehicle for gene delivery.
URI: http://hdl.handle.net/11375/23221
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
bowie_kelly_1997June_masters.pdf
Open Access
19.5 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue