Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23195
Title: Dynamic Power Saving and Load Balancing for Solar Powered WLAN Infrastructure
Other Titles: Power Saving and Load Balancing for Solar WLAN
Authors: Vargas, Enrique
Advisor: Todd, Terence
Department: Electrical and Computer Engineering
Keywords: power saving;load balance;solar power;WLAN;infrastructure;power;load
Publication Date: Dec-2005
Abstract: The IEEE 802.11 standard has been widely adopted as a Wireless LAN (WLAN) technology. This widespread proliferation of the technology has lead to an increase in the number of users taking advantage of so-called "hot-spots" which leads to an increased demand on bandwidth provided by Access Points (APs) in the hot-spot. The logical solution is to deploy more overlapping access points in the same coverage area, thus increasing the capacity of the system by providing load balancing services. However, when a hot-spot is located in an outdoor environment, it becomes difficult to provide the AP with power which is traditionally carried over wired links thus causing the service provider to incur additional costs, not to mention the impossibility in some cases of delivering power to the AP. This problem can be overcome by using solar-panel powered APs which we will refer to as solar nodes (SNs). In this thesis we examine the load-balancing problem that arises when two or more SNs are co-located in the same coverage area. We propose and evaluate two algorithms for efficiently distributing the load among them (transferring stations (STAs) from SN to neighboring SNs) and increasing their lifetime by using power saving schemes that co-ordinate the wake/sleep patterns of the SNs based on traffic load. Finally, a Connection Admission Control (CAC) function is proposed that the SN should use in order to provide controlled access to services. We demonstrate through simulations that our proposals can significantly reduce the hardware requirements and cost of SNs and improve the service perceived by STAs in terms of transmission delay.
URI: http://hdl.handle.net/11375/23195
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
vargas_enrique_j_2005Dec_masters.pdf
Open Access
9.22 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue