Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23092
Title: Over-Expression, Purification and Crystallization of the DNA Binding and Dimerization Region of Epstein-Barr Nuclear Antigen-1
Other Titles: Over-Expression, Purification and Crystallization of Epstein-Barr Nuclear Antigen-1
Authors: Barwell, Jean
Advisor: Frappier, Lori
Department: Biochemistry
Keywords: purify;expression;crystallize;Epstein-Barr;nuclear;antigen
Publication Date: Apr-1995
Abstract: EBV episomes replicate once per cellular S phase, during latent infection of host cells. Only one viral protein, Epstein-Barr Nuclear Antigen-1 (EBNA-1) is required for replication; the rest of the replication machinery is provided by the cell. EBNA-1 is an excellent model to study the molecular events required for DNA replication and its regulation because viral replication is limited to once per cell cycle. EBNA-1 is a member of a special class of DNA binding proteins called origin binding proteins (OBPs). These specialized proteins bind to distinct DNA sequences in the genome called origins of replication, where DNA replication is initiated. Origin binding proteins may serve to distort the DNA at the origin and may also attract the cellular replication machinery. Structural studies of the DNA binding and dimerization region of EBNA-1 using X-ray crystallography were undertaken in order to better understand how OBPs bind to origin DNA sequences and facilitate the assembly of the cellular replication apparatus. Six truncation mutants of EBNA-1, all containing the DNA binding and dimerization region of EBNA-1, were cloned, over-expressed in bacteria and purified to apparent homogeneity. Four of these clones were crystallized using the method of hanging-drop vapour-diffusion. Two fragments, EBNA₄₇₀₋₆₁₉ and EBNA₄₇₀₋₆₀₇, formed well-ordered crystals that diffracted beyond 2.5 Å resolution. In addition , this study also demonstrates the value of finding the most suitable piece of the protein for crystallization. This piece should fold into a compact domain for efficient packing into a crystal. Finding the optimal piece of the protein reduces the time spent searching for crystallization conditions.
URI: http://hdl.handle.net/11375/23092
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
barwell_jean_a_1995Apr_masters.pdf
Open Access
14.79 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue