Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22812
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBramson, Jonathan-
dc.contributor.authorNewhook, Lisa-
dc.date.accessioned2018-05-03T17:23:00Z-
dc.date.available2018-05-03T17:23:00Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/22812-
dc.description.abstractThe field of immuno-oncology has made tremendous advances in the treatment of cancer. Adoptive cellular transfer (ACT) of tumor-specific T cells and oncolytic viruses (OVs) are powerful anti-tumor agents, but each modality faces significant challenges. Despite the promise of ACT against hematological malignancies, success has been limited in solid tumors. OVs preferentially lyse tumor cells, but have difficulty overcoming antiviral host factors when delivered systemically – therapeutic doses must therefore be quite high to achieve tumor delivery. One means of overcoming viral neutralization is by loading OV onto cellular carriers prior to treatment. Since engineered T cells and OVs both possess anticancer activity, and since viruses naturally associate with nearby circulating immune cells, employing T cells engineered with a T cell antigen coupler (TAC) receptor as viral carriers may offer an ideal combination. Our studies indicated that loading oncolytic maraba virus (MRB) onto T cells – engineered with a TAC receptor targeting HER2 – had no impact on the functionality or receptor expression of these T cells. OV loaded on the surface of these TAC-T cells enabled killing of a variety of tumor targets that may be otherwise resistant to TAC-T cell therapy. Efficacy remains to be elucidated in vivo using xenograft murine models due to the lack of a protective antiviral immune response, which ultimately resulted in encephalopathy. These observed toxicities were likely model-specific, as MRB has shown to be highly attenuated in healthy tissues of wild type models. While conceptually attractive, using TAC-T cells as viral carriers to deliver a multi-pronged, one-pot antitumor therapy directly to the site of the tumor requires further evaluation before considering human studies.en_US
dc.language.isoenen_US
dc.subjectOncolytic Virus, T cell, immunotherapy, virus loading, canceren_US
dc.titleInvestigating the use of T cells engineered with a T cell antigen coupler (TAC) receptor as cellular carriers of oncolytic maraba virusen_US
dc.title.alternativeTAC-engineered T cells as carriers of oncolytic virusen_US
dc.typeThesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Newhook_Lisa_S_FinalSubmission2017Septmember_MSc.pdf
Access is allowed from: 2018-09-29
3.68 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue