Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22794
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZiada, Samir-
dc.contributor.authorVanoostveen, Paul-
dc.date.accessioned2018-05-03T16:53:09Z-
dc.date.available2018-05-03T16:53:09Z-
dc.date.issued2017-11-
dc.identifier.urihttp://hdl.handle.net/11375/22794-
dc.description.abstractIn this thesis, the tonal noise produced by flow over perforated plates at oblique angles of incidence is studied experimentally. A two-dimensional model of a perforated plate is used, where the circular holes of a typical perforated plate are replaced by a series of long rectangular Aluminum slats with an adjustable gap width between them. The slats are 3.175 mm thick and the gap width between them is set to 3.175 mm, 6.35 mm, and 12.7 mm. This simplified model is mounted at the exit of an open-loop wind tunnel and tested at angles of incidence of 0° to 40° and flow velocities of 0 to 30 m/s. An angle of 0° is defined as flow parallel to the plate. The acoustic response is studied using microphone measurements, and flow visualization is done using particle image velocimetry. The effect of the angle of incidence, flow velocity, gap width, and streamwise position are investigated. The flow visualization reveals that tonal noise is produced by the periodic shedding and impingement of vortices at the trailing edge of the gaps. Vortices form in the unstable free shear layer originating at the leading edge of the gap and impinge on the downstream side of the gap. At the downstream corner, these vortices separate into vortex pairs, consisting of one positively rotating and one negatively rotating vortex. These vortices are shed periodically, leading to the production of tonal noise at the shedding frequency. The effect of the angle of incidence is investigated by changing the angle of the plate with respect to the flow. For a given gap width, tones are produced only for a specific range of angles. Depending on the plate geometry, this range of angles is typically around 5° to 30°. Within this range of angles, the free shear layer impinges on the downstream side of the gap. For angles which are too small or too large, the free shear layer misses this downstream side and tones are not produced. For a larger gap width, tones are produced at smaller angles of incidence. Similarly, for a given plate geometry, there is a preferred range of flow velocities at which tonal noise is produced. The velocity at which the free shear layer is the most unstable at the tone frequency produces the strongest vortices and the loudest tones. The optimal velocity is lower for larger gap widths. Finally, it is found that the magnitude of the produced tones increases in the streamwise direction over repeated gaps along the length of the plate. This is due to the local flow conditions changing in the streamwise direction, only reaching the optimal conditions after a certain length of the plate.en_US
dc.language.isoenen_US
dc.subjectAeroacousticsen_US
dc.subjectFluid-Dynamic Feedbacken_US
dc.subjectArchitectural Acousticsen_US
dc.subjectFlow-Induced Noiseen_US
dc.subjectWind Engineeringen_US
dc.subjectFluid Mechanicsen_US
dc.subjectFluid-Structure Interactionen_US
dc.subjectAcoustic Tone Generationen_US
dc.titleFlow-Induced Noise of Perforated Plates at Oblique Angles of Incidenceen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Vanoostveen_Paul_J_2017October_MASc.pdf
Open Access
Paul Vanoostveen MASc Thesis5.16 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue