Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22777
Title: The Characterization of a Novel Putative Signalling Protein and its Interaction with Tyrosine 1253 of the NEU/ERBB2 Receptor Tyrosine Kinase
Other Titles: The Characterization of the p34-NEU/ERBB2 Interaction
Authors: Maslikowski, Bart
Advisor: Muller, William
Department: Biology
Keywords: protein;tyrosine 1253;NEU/ERBB2;tyrosine kinase
Publication Date: Jun-2002
Abstract: The Neu/ErbB2 receptor tyrosine kinase has been implicated in the induction of mammary tumourigenesis. Both Ras-dependent and independent signalling downstream of activated Neu is believed to mediate cellular signalling that contributes cellular transformation in oncogenic Neu. Signalling from five 𝘣𝘰𝘯𝘢 𝘧𝘪𝘥𝘦 autophosphorylation sites (termed sites A through E) in the carboxyl tail of the receptor mediate these signals to the cytosol. Of the four positive regulatory sites (B, C, D, E), only three (B, C, D,) signal through known signalling molecules. Site E, (Y1253) in Neu, though known to interact with DOKR is essentially an orphan site. The discovery of a 34kD protein capable of associating to peptides corresponding to site E prompted investigations into the nature of site E signalling. Mass spectrometric analyses revealed that the 34kD protein is 2,4-dienoyl-CoA reductase (DECR1), a lipid metabolism protein typically localized to the mitochondria. Investigations into this protein reveal that DECR1 is capable of associating with Neu site E in a tyrosine phosphorylation and sequence specific manner. Furthermore, analyses with site E second-site mutants (YE[APEY], YE[DPEY], YE[NAEY] and YE[NDEY]) show that DECR1 associates in a manner consistent to a PTB domain-containing protein. Analyses of amino acid sequence demonstrate the presence of a putative Bcl-domain in DECR1 suggestive of a role in apoptosis. Experiments into the apoptotic activity of DECR1 proved inconclusive. The examination of sub-cellular localization of Neu and DECR1 showed that the two proteins are found in both the mitochondrial and plasma membrane fractions. These results demonstrate that DECR1 may be a veritable binding partner for Neu Y1253.
URI: http://hdl.handle.net/11375/22777
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
maslikowski_bart_m_2002June_masters.pdf
Open Access
6.46 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue