Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22696
Title: Activation-Dependent Enhancements of Synaptic Strength in Pyriform Cortex Efferents to the Entorhinal Cortex
Other Titles: Synaptic Plasticity in the Entorhinal Cortex
Authors: Chapman, Clifton
Advisor: Racine, Ronald
Department: Psychology
Keywords: synaptic strength;pyriform;entorhinal cortex
Publication Date: 1995
Abstract: The entorhinal cortex is reciprocally connected with both neocortical sensory areas and the hippocampal formation, and is thought to play a pivotal role in learning and memory. Changes in synaptic strength are thought to provide the major neurophysiological basis for memory formation, but little is known about synaptic plasticity in the entorhinal cortex. The objectives of this research were to provide a basis for the interpretation of evoked potentials recorded from the entorhinal cortex following pyriform (primary olfactory) cortex stimulation 𝘪𝘯 𝘷𝘪𝘷𝘰, and to determine the conditions under which synaptic enhancements in this pathway may occur and contribute to lasting changes in the processing of olfactory information. The synaptic currents which generate field potentials in the entorhinal cortex following pyriform cortex and medial septal stimulation were first localized to the superficial layers of the entorhinal cortex using current source density analysis techniques in the anesthetized rat. This allowed changes in the strength of these synaptic inputs to be monitored in the awake rat by measuring evoked field potential amplitudes at a single cortical depth. Long-term synaptic potentiation (LTP) in this pathway was reliably induced following stimulation of the pyriform cortex with either epileptogenic stimuli, or with prolonged subconvulsive high-frequency trains. Further, stimulation which results in short-term frequency potentiation effects, was found to increase the amount of LTP induced. Concurrent stimulation of the medial septum at a frequency similar to that of the endogenous theta rhythm also resulted in a cooperative enhancement of the LTP produced. Computational modelling techniques were then used to formalize the heterosynaptic contribution of frequency potentiating medial septal inputs to Hebbian synaptic modification in entorhinal cortex. These results indicate that the frequency of rhythmic activity in sensory afferents and the activity of the medial septum may play critical roles in the regulation of synaptic plasticity in the entorhinal cortex.
URI: http://hdl.handle.net/11375/22696
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
chapman_clifton_a_1995_phd.pdf.txt.pdf
Open Access
27.15 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue