Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22693
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTruant, Ray-
dc.contributor.authorIrwin, Stuart-
dc.date.accessioned2018-04-02T17:20:09Z-
dc.date.available2018-04-02T17:20:09Z-
dc.date.issued2004-01-
dc.identifier.urihttp://hdl.handle.net/11375/22693-
dc.description.abstractAtaxin-1 is the protein affected in Spinocerebellar Ataxia Type 1 (SCA1) polyglutamine neurodegenerative disease. The biological function of ataxin-1 is unknown. By using live cell fluorescence microscopy and cultured human HeLa cells, we have shown that ataxin-1 nuclear inclusions (ataxin-1 NIs) are unique subnuclear sites of ataxin-1 function that do not resemble typical ataxin-1 polyglutamine nuclear aggregates or neuronal intranuclear inclusions (NIIs). Ataxin-1 NIs form independent of polyglutamine expansion in ataxin-1, and we found that ataxin-1 NIs are capable of recruiting the mRNA export factor TAP /NXF1. We propose that ataxin-1 NIs may be more accurately termed ataxin-1 nuclear bodies (ataxin-1 NBs) and suggest that ataxin-1 NBs play a role in mRNA processing and transport. We discovered that the serine to alanine mutation at position 776 of ataxin-1 (S776), known to inhibit spinocerebellar ataxia type 1 (SCA1) pathogenesis, plays a critical role in the frequency and size of ataxin-1 NBs. We found that polyglutamine expansion was not essential for ataxin-1 NB formation, and that serine 776 may be important in turnover regulation of polyglutamine expanded ataxin-1. In addition, we found that serine 776 does not significantly affect nuclear localization of ataxin-1, and that the ataxin-1 associated protein, 14-3-3 zeta, does not have a role in the nucleo-cytoplasmic transport of ataxin-1. These findings reveal that the serine 776-mediated 14-3-3 zeta co-localization with ataxin-1 is likely not important to SCA1 pathogenesis, but that the role of serine phosphorylation of ataxin-1 does have an effect on the formation of ataxin-1 NBs, thereby implicating ataxin-1 NB formation as important for understanding SCA1 disease.en_US
dc.language.isoenen_US
dc.subjectAtaxin-1en_US
dc.subjectnuclearen_US
dc.titleAtaxin-1 Nuclear Bodies are Subnuclear Sites of Ataxin-1 Functionen_US
dc.title.alternativeAtaxin-1 Nuclear Bodiesen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistryen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
irwin_stuart_2004Jan_masters.pdf.pdf
Open Access
8.13 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue