Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22674
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEpand, Richard-
dc.contributor.authorWatre Jones, Joses Rikseng-
dc.date.accessioned2018-03-21T13:46:57Z-
dc.date.available2018-03-21T13:46:57Z-
dc.date.issued1999-
dc.identifier.urihttp://hdl.handle.net/11375/22674-
dc.description.abstract<p> Studies examining the characteristics of membranes that facilitate and affect fusion are central to understanding the intricacies of inter- and intra-cellular fusion processes and expanding the existing knowledge of other roles membranes may have. In this thesis a model membrane system, using Sendai Virus and Egg phosphatidylcholine (EggPC) liposomes containing the receptor glycophorin A (proteoliposomes), was used in examining different fusion with proteoliposomes prepared by different methods. For the first time glycophorin A was incorporated into EggPC liposomes vectorially. This was accomplished separately with two detergents: octylglucoside and CHAPS. Fusion of Sendai Virus with the reconstituted proteoliposomes revealed that octylglucoside reconstituted proteoliposomes exhibited lower fusion compared with CHAPS reconstituted proteoliposomes. Efforts to determine the basis for this difference, using either proteinase K or O-glycosidase digestion and subsequent fragment analysis using SDS-PAGE and silver-staining, were inconclusive. A separate study examined the ability of large membrane-anchored biopolymers (chosen in virtue of their large hydrophilic domains) to sterically stabilize Egg PC liposomes. Glycophorin A, the lipophosphoglycan (LPG) from Leishmania donovani, and a polyethyleneglycol-conjugated phospholipid (PEG5000-PE) were incorporated into Egg PC liposomes. In each case, binding of a soluble fluorescent probe, NeutrAvidin Oregon Green, to liposomes containing biotin-conjugated lipid was restricted. This supports the idea that large membrane-anchored biopolymers are able to sterically stabilize liposomes.</p>en_US
dc.language.isoen_USen_US
dc.subjectfusion, steric stabilization, liposomes, membrane-anchored, bipolymersen_US
dc.titleFusion and Steric Stabilization of Liposomes Containing Membrane-Anchored Biopolymersen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistryen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Jones_Joses_R._1999_Masters..pdf
Open Access
3.78 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue