Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22483
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVlachopoulos, John-
dc.contributor.authorEmami, Maryam-
dc.date.accessioned2018-01-10T20:29:17Z-
dc.date.available2018-01-10T20:29:17Z-
dc.date.issued2008-08-
dc.identifier.urihttp://hdl.handle.net/11375/22483-
dc.description.abstract<p> The foaming process has received increased attention by the rotational molding industry in recent years. The use of metallocene catalyzed polyethylenes for producing a cellular structure is a new development in rotational molding. The objective of this work was to investigate the effects of different chemical blowing agents, resin properties and processing conditions on the structure of foamed metallocene polyethylene and obtain a fundamental understanding of the parameters governing the foam structure and part properties.</p> <p> An experimental study was conducted to produce metallocene polyethylene foams in dry-blending-based rotational foam molding. The physical and cell structure properties of the final foamed parts were examined. The critical processing parameters that optimize the foam structure have been identified through adjustments to the molding conditions.</p> <p> The foaming performance of exothermic and endothermic chemical blowing agents were examined and it was revealed that selecting an appropriate chemical blowing agent was crucial as the foam structure depends significantly on the properties of the blowing agent. Exothermic blowing agents resulted in greater foam density reduction compared to endothermic blowing agents.</p> <p> The effect of rheological properties on the foaming process and foam properties was also examined. Rotomolding experiments were performed in monolayer and skin-foam moldings. Observations indicated that the final foam properties were profoundly influenced by the rheological properties of the polymer materials. There was a good correlation between the foam properties produced in both monolayer and two layer moldings. It was discovered that polymer materials with higher extensional viscosity could provide a promising foaming performance at different processing conditions.</p> <p> The effect of the surface tension of the polymer materials was investigated. It was found that type of reaction of the blowing agent (exothermic/endothermic) and composition of gas generated determine whether the surface tension of the resin contributes to the trend of changes in foam properties.</p>en_US
dc.language.isoen_USen_US
dc.subjectrotational foam molding, metallocene, catalyzed, polyethylene, chemical blowing agents, polymeren_US
dc.titleRotational Foam Molding of Metallocene Catalyzed Polyethyleneen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Emami_Maryam_2008Aug_Masters..pdf
Open Access
15.02 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue