Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22452
Title: The Catenin p120^ctn Regulates Kaiso-Mediated Transcriptional Repression
Authors: Spring, Christopher
Advisor: Daniel, Juliet
Department: Biology
Keywords: Catenin;Transcriptional Repression
Publication Date: Sep-2003
Abstract: Kaiso is a POZ-ZF transcription factor initially identified as an interaction partner for the cell adhesion co-factor p120^ctn. Kaiso-DNA binding is inhibited by p120^ctn, implicating p120^ctn in the regulation of Kaiso transcriptional activity. In this study, Kaiso repressed transcription of a luciferase reporter carrying four copies of the sequence-specific Kaiso-binding site (4xKBS) in artificial promoter assays. Mutation of the 4xKBS which is known to disrupt Kaiso-DNA binding also abrogated Kaiso-mediated transcriptional repression. Moreover, p120^ctn inhibited Kaiso-mediated transcriptional repression via the 4xKBS, yet neither the p120^ctn deletion mutant ΔR3-ll (lacking the Kaiso binding site) or p120^ctn NLS mutant (which cannot enter the nucleus) inhibited transcriptional repression. Furthermore, in NIH 3T3 cells (which do not demonstrate a Kaiso-pl20ctn interaction), pl20ctn failed to inhibit transcriptional repression. Many POZZF transcriptional repressors recruit an HDAC complex via their POZ domain to repress transcription. To investigate the mechanism of Kaiso-mediated transcriptional repression, the POZ domain of Kaiso was deleted, which abrogated transcriptional repression. Kaiso immunoprecipitates contained HDAC activity, and the HDAC co-repressor Sin3A co-immunoprecipitated with Kaiso, implying that Kaiso recruits Sin3A to repress transcription in an HDAC-dependent manner. Lastly, Kaiso repressed transcription via a human 𝑚𝑎𝑡𝑟𝑖𝑙𝑦𝑠𝑖𝑛 promoter fragment. This suggests that the KBS element is functionally relevant and implicates 𝑚𝑎𝑡𝑟𝑖𝑙𝑦𝑠𝑖𝑛 as a Kaiso target-gene. Collectively, these data establish Kaiso as a sequence-specific, HDAC-dependent transcriptional repressor that is regulated by the adhesion co-factor p120^ctn.
URI: http://hdl.handle.net/11375/22452
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
spring_christopher_m_masters.pdf.pdf
Open Access
11.83 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue