Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22430
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChidiac, Samir E.-
dc.contributor.authorCatania, Eric J. C.-
dc.date.accessioned2017-11-29T15:04:41Z-
dc.date.available2017-11-29T15:04:41Z-
dc.date.issued2007-11-
dc.identifier.urihttp://hdl.handle.net/11375/22430-
dc.description.abstractBoth private and public sectors own and operate an array of office buildings that consume energy and contribute to the emission of greenhouse gases. In an attempt to reduce energy demands, an analysis into the cost/benefit relationship of incorporating energy retrofit measures (ERMs) was carried out. The main objective was to develop a methodology for screening office buildings for both their current level of energy efficiency and their potential for retrofit applications. Optimal retrofit options can be determined by examining how different building characteristics affect the benefits received from improving various components. By characterizing the office building stock into a manageable set of representative models, it was possible to make estimations on energy consumption for lights, computers, pumps, fans, hot water supply, cooling and heating loads. Employing EnergyPlus, an energy modelling software package, these representative building models were analyzed using three different climate regions for the specific effects that altering building components have on energy consumption. Using a statistical regression analysis, a set of equations was derived for determining the energy consumption based on building-specific variable values. A life cycle cost analysis was used to obtain the net present value associated with the implementation of various retrofit ERMs. Payback period was adopted to quantify the cost effectiveness of ERMs.en_US
dc.language.isoenen_US
dc.subjectretrofiten_US
dc.subjectofficeen_US
dc.subjectenergyen_US
dc.titleA Methodology for Screening Office Buildings for Energy Retrofit Measuresen_US
dc.typeThesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
catania_eric_2007Nov_masters.pdf
Open Access
22.14 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue