Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22391
Title: MECHANORESPONSIVE POLYMERS BASED ON SPIROPYRAN MECHANOPHORE
Authors: Li, MENG
Advisor: Zhu, Shiping
Department: Chemical Engineering
Keywords: spiropyran;mechanophore;smart polymer;force-senstive
Publication Date: 2017
Abstract: Spiropyran (SP) is an effective mechanophore because it is easy to be covalently incorporated into polymers and capable of changing color upon mechanical loading. SP motif is a model mechanophore in fundamental studies of mechanochemistry. Therefore, it is of great significance to gain a deep and comprehensive knowledge of SP mechanochemistry for the exploration of mechanochemistry in general. In the beginning of this thesis, a review of SP mechanophore was presented from an engineering perspective. A workflow for SP mechanochemistry, applications in various polymeric systems, impacting factors and characterization techniques as well as conclusions were thoroughly presented. The review aimed to offer deep insight into polymer mechanochemistry and provide approaches to study other mechanophores using the example of SP mechanochemistry in polymers. So far there have been three types of SP mechanophores (SP1, SP2 and SP3) reported in the literature. SP1 and SP2 are sensitive to both UV light and mechanical force, whereas SP3 is sensitive to mechanical force but not to UV, which is an excellent candidate for outdoor applications. Due to the unique feature of SP3, this project is mainly focused on applying SP3 mechanophore into functional and structural polymeric materials. • We designed and synthesized divinyl SP3 mechanophore cross-linker, which can be employed in chain growth polymerization, accounting for more than 80% of total polymer products. As a demonstration, SP3 was incorporated as a cross-linker in the free radical polymerization of methyl acrylate (MA). The mechanoactivation and UV activation of SP3-cross-linked PMA were investigated in details. • SP3 mechanophore cross-linker was covalently incorporated into two widely used polyolefins through facile cross-linking. It represents the first example of smart polyolefins that feel the force by color changing, opening the possibilities of applying SP mechanophore into widely used polyolefin materials, accounting for more than half of the total polymer materials. • We prepared force sensitive acrylic latex coating via covalent incorporation of SP3 mechanophore cross-linker. It is the first example of mechanochromic acrylic latexes, and it provides insight into the design of force-sensitive and self-reporting polymer coatings. • We reported the CO2-breathing induced reversible activation of SP3 mechanophore within microgels. This work provides an effective approach to study the forces inside swollen microgels. It also demonstrates the biomimetic processes with shape deformation and concomitant color/fluorescence change.
URI: http://hdl.handle.net/11375/22391
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thesis with Appendix-Meng.pdf
Open Access
7.85 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue