Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22316
Title: Pseudomonas aeruginosa minor pilins regulate virulence via modulation of FimS-AlgR activity
Authors: Marko, Victoria
Advisor: Burrows, Lori
Department: Biochemistry and Biomedical Sciences
Keywords: pseudomonas aeruginosa;type iv pili;virulence;caenorhabditis elegans;alginate;biofilms
Publication Date: 2017
Abstract: The type IV pilus is a motility organelle found in a range of bacteria, including the opportunistic pathogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm maturation, surface adhesion, and virulence. The principle structural protein of the pilus is the major pilin, PilA, while a set of low abundance “minor pilins” are proposed to constitute the pilus tip. The minor pilins, FimU and PilVWXE, along with the non-pilin protein PilY1, prime assembly of surface-exposed pili. The fimU-pilVWXY1E operon is positively regulated by the FimS-AlgR two-component system. Independent of pilus assembly, PilY1 is an adhesin and mechanosensor that, along with PilW and PilX, triggers virulence upon surface attachment. Here, we aimed to uncover the mechanism for PilWXY1-mediated virulence. We hypothesized that loss of PilWXY1 would relieve feedback inhibition on FimS-AlgR, resulting in increased transcription of the minor pilin operon and dysregulation of virulence factors in the AlgR regulon. Caenorhabditis elegans slow killing assays revealed that pilW, pilX, and pilY1 mutants had reduced virulence relative to a pilA mutant, implying a role in virulence independent of pilus assembly. FimS-AlgR were required for the increased promoter activity of the minor pilin operon upon loss of pilV, pilW, pilX, or pilY1. Overexpression or hyperactivation of AlgR by point mutation led to reduced virulence, and the virulence defects of pilW, pilX, and pilY1 mutants were dependent on FimS-AlgR expression. We propose that PilWXY1 inhibit their own expression at the level of FimS-AlgR, such that loss of pilW, pilX, or pilY1 leads to FimS-mediated activation of AlgR, and reduced expression of acute-phase virulence factors. Accumulation of mutations in the minor pilin operon may represent an evolutionary strategy for P. aeruginosa populations in chronic lung infections, as loss of PilWXY1 would upregulate the expression of AlgR-dependent virulence factors – such as alginate – characteristic of such infections.
URI: http://hdl.handle.net/11375/22316
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Marko_Victoria_A_201708_MSc.pdf
Access is allowed from: 2018-01-01
2.64 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue