Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22311
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMcNicholas, Paul D.-
dc.contributor.advisorFranczak, Brian C.-
dc.contributor.authorPesevski, Angelina-
dc.date.accessioned2017-10-30T15:13:45Z-
dc.date.available2017-10-30T15:13:45Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/22311-
dc.description.abstractClustering procedures suitable for the analysis of very high-dimensional data are needed for many modern data sets. One model-based clustering approach called high-dimensional data clustering (HDDC) uses a family of Gaussian mixture models to model the sub-populations of the observed data, i.e., to perform cluster analysis. The HDDC approach is based on the idea that high-dimensional data usually exists in lower-dimensional subspaces; as such, the dimension of each subspace, called the intrinsic dimension, can be estimated for each sub-population of the observed data. As a result, each of these Gaussian mixture models can be fitted using only a fraction of the total number of model parameters. This family of models has gained attention due to its superior classification performance compared to other families of mixture models; however, it still suffers from the usual limitations of Gaussian mixture model-based approaches. Herein, a robust analogue of the HDDC approach is proposed. This approach, which extends the HDDC procedure to include the mulitvariate-t distribution, encompasses 28 models that rectify one of the major shortcomings of the HDDC procedure. Our tHDDC procedure is fitted to both simulated and real data sets and is compared to the HDDC procedure using an image reconstruction problem that arose from satellite imagery of Mars' surface.en_US
dc.language.isoenen_US
dc.subjectModel-Based Clusteringen_US
dc.subjectHigh-Dimensionalen_US
dc.titleSubspace Clustering with the Multivariate-t Distributionen_US
dc.typeThesisen_US
dc.contributor.departmentStatisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Pesevski_Angelina_2017_Master.pdf
Open Access
1.3 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue