Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22286
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMascher, P.-
dc.contributor.advisorHaugen, H. K.-
dc.contributor.authorLogan, Andrew-
dc.date.accessioned2017-10-19T18:09:15Z-
dc.date.available2017-10-19T18:09:15Z-
dc.date.issued2005-12-
dc.identifier.urihttp://hdl.handle.net/11375/22286-
dc.description.abstract<p> The potential of a mode-locked semiconductor laser oscillator as a short pulse source for two-photon fluorescence microscopy is explored. Amplification of the 1075 nrn laser is performed with a single pass semiconductor optical amplifier or a ytterbium-doped fibre amplifier. The mode-locked diode oscillator amplified by the Yb-doped fibre amplifier has been shown to produce uncompressed pulses of 4-10 ps with an average power of up to ~0.8 W. Compression with a single pass modified grating pair compressor reduces the pulse duration to as short as 860 fs. The output power level can be easily scaled to higher values. </p> <p> The ability to tightly focus the Yb-doped fibre amplifier beam and semiconductor optical amplifier beam for the purpose of microscopy is studied. Results indicate that the fibre performs close to an ideal Gaussian laser beam source. The semiconductor optical amplifier beam does not focus as well. Measurements suggest that regions of the beam, when focused, do not significantly contribute to the generation of two-photon fluorescence. </p> <p> The efficiency of two-photon fluorescence generation of the two amplifiers is compared to that of the conventional two-photon excitation source: the mode-locked titanium sapphire laser. Results illustrate the need to improve certain operating parameters of the laser oscillator and two amplifiers to be considered practical for two-photon fluorescence microscopy. The mode-locked semiconductor laser oscillator amplified by the Yb-doped fibre amplifier is deemed to be close to being ready for two-photon imaging applications. </p>en_US
dc.language.isoenen_US
dc.subjectFeasibilityen_US
dc.subjectMode-Lockeden_US
dc.subjectSemiconductoren_US
dc.subjectExcitation Sourcesen_US
dc.subjectTwo-Photonen_US
dc.subjectFluorescenceen_US
dc.titleInvestigation of the Feasibility of Mode-Locked Semiconductor Devices as Excitation Sources for Two-Photon Fluorescenceen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Logan_Andrew_S_2005Dec_Masters.pdf
Open Access
11.71 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue