Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22226
Title: Computational determination of the largest lattice polytope diameter
Authors: Chadder, Nathan
Advisor: Deza, Antoine
Department: Computing and Software
Publication Date: 2017
Abstract: A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k) for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors.
URI: http://hdl.handle.net/11375/22226
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Chadder_Nathan_S_2017Sept_MASc.pdf
Open Access
370.59 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue