Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22136
Title: The Effect of Temperature on Unbonded Fiber-Reinforced Elastomeric Isolators
Authors: Sciascetti, Alexander
Advisor: Tait, Michael
Department: Civil Engineering
Keywords: base isolation;seismic isolation;low temperature;bridge;fibre-reinforced;elastomeric isolator
Publication Date: 2017
Abstract: During strong ground motions, structures equipped with base isolation systems have been shown to have their seismic demand significantly reduced, mitigating adverse effects such as damage and loss of life. More recently, the fiber-reinforced elastomeric isolator (FREI) has been investigated as a relatively new type of isolator for the base isolation of structures. Constructed from alternating layers of elastomer and carbon-fiber cloth, FREI can be produced in large pads that can be cut to any desired size and shape when required. In bridges, FREI can to be used in an unbonded application (U-FREI) by placing them between the bridge deck and the piers. Experimental and numerical investigations have shown U-FREI as a viable option for the isolation of bridges. However, experimental studies have been limited to room temperature testing. In North America, climates vary drastically across the continent. Northern climates, such as those existent in Canada, are capable of reaching extremely low temperatures. Thus, base isolated bridges in these regions require isolation systems that perform adequately at cold temperatures. The studies presented in this dissertation have been completed in order to investigate the effects that low temperatures have on U-FREI used in bridge structures. An experimental program was conducted that evaluated the behaviour of U-FREI. It was found that U-FREI performed adequately under lateral displacements expected during a seismic event, and provided acceptable response under vertical and rotational testing that is typical of normal bridge operation. Using these results, a numerical model for U-FREI was then updated to account for the effects of low temperature. The model was combined with a bridge model to evaluate the seismic response of a bridge structure isolated with U-FREI subjected to low temperatures. A substantial reduction in seismic demand was achieved, even under the most severe conditions tested.
URI: http://hdl.handle.net/11375/22136
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Sciascetti_Alexander_finalsubmission2017September_MASc.pdf
Access is allowed from: 2018-09-28
Full Thesis4.31 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue