Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22047
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEmadi, Ali-
dc.contributor.advisorSchofield, Nigel-
dc.contributor.authorFairall, Earl-
dc.date.accessioned2017-10-04T19:12:43Z-
dc.date.available2017-10-04T19:12:43Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/22047-
dc.description.abstractThis thesis investigates and determines the design considerations to be addressed when designing switched reluctance machines (SRMs) operating at high surface-speeds and high-loads. A new method is introduced to the traditional machine design procedure that captures all of the mechanical, thermal and electro-magnetic considerations for such electric machines. This method is applicable to any motor design; however, is most suitable for machines with rotors that sustain mechanical stresses near the rotor core material limits. The method begins by using common application specifications to identify the maximum diameter and length of a rotor through a series of structural analyses. Maximizing rotor diameter and axial length enables designers to evaluate a machine's theoretical mechanical and electro-magnetic performance limits. The design method is structured such that the designer must use theoretical limits as a constraint for assessing future design decisions which ultimately influence machine cost and performance. The proposed design method is applied to a case study example typical of a large electric vehicle traction machine, a 22,000rpm, 150 kW switched reluctance machine, while attempting to adhere with design practices commensurate with automotive mass manufacturing. To achieve this, a parallel connected 12/8 pole topology was finally developed. The thesis research suggest that a 440 MPa yield strength, 0.27mm thickness lamination with 30 turn stator coils is sufficient to meet the specification requirements within a prescribed power electronic converter voltage and current constraints, while satisfying material mechanical and thermal considerations. Detailed analysis of AC effects, performance characteristics, thermodynamics, noise and vibration is presented to simultaneously demonstrate and validate the proposed machine design and design method.en_US
dc.language.isoenen_US
dc.subjectdesignen_US
dc.subjectswitched reluctance machineen_US
dc.subjectrotordynamicsen_US
dc.subjectelectromagneticsen_US
dc.subjectthermodynamicsen_US
dc.subjectnoise vibration and harshnessen_US
dc.titleDesign Considerations for High Surface-Speed and High-Load Switched Reluctance Machinesen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Fairall_Earl_W_2017Sept_PhD.pdf
Open Access
16.86 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue