Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22000
Title: Design and Synthesis of Novel Small Molecule Antimicrobials
Authors: Brown, Carla
Advisor: McNulty, James
Department: Chemical Biology
Keywords: organic chemistry;chemical biology
Publication Date: 2017
Abstract: Antimicrobial resistance is a significant threat to global health, and it is necessary to identify new drugs and drug targets for pathogenic bacteria, parasites, viruses, and fungi. Novel small molecules with antimicrobial activity may be discovered in the lab through chemical synthesis or from nature as secondary metabolites. This thesis describes our efforts to synthesize and identify antiparasitic and antiviral small molecules. The preparation of 3-diarylether quinolines with 5 μM activity against the parasite T. gondii, through a novel TFA-catalysed Povarov reaction using enol ethers as carbonyl surrogates is described. Libraries of quinazolinone and dihydroquinazolinone derivatives have been prepared through a multicomponent synthetic route. Structure activity relationship analysis allowed for differentiation of the antiparasitic pharmacophore from the antiviral pharmacophore, as well as the identification of compounds with single digit micromolar activity against both T. gondii and Herpes Simplex Virus 1. This work also details the design and synthesis of B-ring aza-analogs of bioactive Amaryllidaceae alkaloids in just 5 steps from chiral pool reagents. Aza-substitution of the B-ring eliminated antiviral activity, and this modification may also affect anticancer activity. Analysis of several natural product sources has also identified novel small molecules. Isolation of metabolites from Xylaria polymorpha identified three novel polyketide derivatives with unknown biological activity. The alkaloid candicine was found to be the primary polar metabolite from Ficus benjamina latex, as well as a potent inhibitor of murine cytomegalovirus. By identifying the mechanisms of action of these bioactive small molecules, we may identify targets for further drug development.
URI: http://hdl.handle.net/11375/22000
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Brown_Carla_E_finalsubmission201709_PhD.pdf
Access is allowed from: 2018-09-13
11.58 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue