Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21959
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGupta, Bhagwati-
dc.contributor.authorAmon, Siavash-
dc.date.accessioned2017-10-03T18:12:43Z-
dc.date.available2017-10-03T18:12:43Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/21959-
dc.description.abstractLhx genes are a sub-family of Hox genes that play important roles in animal development. In Caenorhabditis elegans there are seven Lhx genes, including the founding family member lin-11. The lin-11 gene is necessary for the specification of neuronal and reproductive tissues. My thesis work has involved understanding the mechanism of lin-11 regulation and its function in these tissues. To this end, I addressed two distinct but complementary questions, one of which focused on how transcriptional regulation of lin-11 occurs and the second on the role of LIN-11 protein domains/regions. My work on the transcriptional regulation has uncovered important roles of two of the largest lin-11 introns, intron 3 and intron 7. These introns promote lin-11 expression in non-overlapping sets of amphid neurons. Based on gene expression patterns and behavioural assays, intron 3 is capable of restoring lin-11 function in lin-11(n389 ) null mutant allele. Comparison of intron 3-driven reporter expression in the neuronal cell types between C. elegans and C. briggsae has revealed cis and trans evolutionary changes in lin-11 regulation between the two species. Functional dissection of the introns in C. elegans has led to the identification of three distinct non-overlapping enhancers, each specific for a single amphid neuron, i.e., RIC, AIZ, and AVG. I have also identified four transcription factors, SKN-1, CEH-6, CRH-1, and CES-1, that act through these enhancers to regulate neuronal expression of lin-11. Furthermore, I have characterized the function of the LIM domains and a proline-rich (PRR) C-terminus region of LIN-11 in the specification of neuronal and reproductive tissues. My work shows that while the LIM domains are required for LIN-11 function in these tissues, the PRR region is dispensable. I have also examined the functional conservation of lin-11 domains using two other Lhx genes, Drosophila melanogaster (dLim1) and Mus musculus (Lhx1 ), and found that both of these genes were able to rescue lin-11 defects. Together, my work has significantly advanced our understanding of transcriptional regulation of lin-11, the importance of LIM domains in tissue formation, and functional conservation of Lhx genes across phyla.en_US
dc.language.isoenen_US
dc.subjectLhxen_US
dc.subjectlin-11en_US
dc.subjectLIM-Hoxen_US
dc.subjectC. elegansen_US
dc.subjectNeuronen_US
dc.subjectIntron evolutionen_US
dc.titleRegulation and function of the Lhx gene, lin-11, in Caenorhabditis elegans nervous system developmenten_US
dc.typeThesisen_US
dc.contributor.departmentBiologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Amon_Siavash_2017May_PhD.pdf
Access is allowed from: 2018-05-30
6.14 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue