Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21935
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHuang, W. P.-
dc.contributor.authorZhao, Lei-
dc.date.accessioned2017-09-20T17:04:34Z-
dc.date.available2017-09-20T17:04:34Z-
dc.date.issued2007-06-
dc.identifier.urihttp://hdl.handle.net/11375/21935-
dc.description.abstract<p> The modeling, design and simulation of optical waveguides and integrated optical triplexer filters are presented. The work includes two subjects. One is application of improved three-point fourth-order finite-difference method and the other is design of triplexer optical filter for fiber-to-the-home passive optical network.</p> <p> The improved three-point fourth-order finite-difference method utilizes special format of one dimensional Helmholtz Equation and adopts generalized Douglas scheme and boundary conditions matching at interface. The modal analysis of dielectric slab waveguides and metal slab waveguides that support Surface Plasmon Plaritons by using this improved fourth-order finite-difference method is compared by using traditional first-order central difference method. The application of using improved three-point fourth-order finite-difference method in modal analysis of optical fiber waveguide is also provided.</p> <p> The modeling, design and simulation of monolithically integrated triplexer optical filter based on silicon wire waveguide are presented in detail. The design of this device facilitates multi-mode interference device (MMI) and arrayed waveguide grating (AWG) device to function as coarse wavelength division multiplexing and dense wavelength division multiplexing respectively. The MMI is used to separate downstream signs for upstream signal and AWG is used to further separate two down-stream signals with different bandwidths required. This design is validated by simulation that shows excellent performance in terms of spectral response as well as insertion loss.</p>en_US
dc.language.isoen_USen_US
dc.subjectoptical waveguides, integrated, triplexer filter, design, finite-difference, dielectric slab, multi-mode interferenceen_US
dc.titleOptical Waveguides and Integrated Triplexer Filteren_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Zhao_Lei_2007Jun_Masters..pdf
Open Access
3.14 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue