Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21929
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChing, C.Y.-
dc.contributor.advisorEwing, D.-
dc.contributor.authorSchertzer, Michael J.-
dc.date.accessioned2017-09-18T19:28:45Z-
dc.date.available2017-09-18T19:28:45Z-
dc.date.issued2005-08-
dc.identifier.urihttp://hdl.handle.net/11375/21929-
dc.description.abstract<p> Experiments were performed to investigate the effect that a gap between a heated fin and a porous plate has on the heat transfer performance of a simulated capillary evaporator. The heat transfer performance was examined for two porous plates with average pore radii of 50 and 200 μm respectively. Tests were performed for gap distances between 0 and 900 μm and heat fluxes ranging from 17 to 260 kW/m^2. The heat transfer performance of the simulated capillary evaporator initially increased as the gap distance was increased. However, a further increase in the gap distance caused a decrease in performance. The maximum heat transfer performance occurred at a smaller gap distance for the plate with the smaller pore radius. For small gap distances, persistent high temperature regions were observed on the surface of the heated foil that grew and became more frequent at higher heat fluxes. For larger gap distances, saturated regions that appeared on the foil at moderate heat fluxes suggest that microlayer evaporation may be taking place within the gap. At high heat fluxes, these saturated regions are no longer present, but the temperature of the heated foil remained stable.</p> <p> The heat transfer process in the porous media was examined using thermocouples embedded within the porous plates. These temperature measurements indicate that a two phase region forms within the porous plate for a pore radius of 200 μm. Little evidence of vapour was observed within the plate with a pore radius of 50 μm. In that case, there was more evidence of vapour present at the surface of the porous plate. There was less evidence of vapour at the surface of the porous plate for the larger gap distances, suggesting that the vapour escapes more easily through the gap at larger gap distances.</p>en_US
dc.language.isoen_USen_US
dc.subjectgap distance, heat transfer, finned surface, porous plate, capillary evaporator, heat fluxesen_US
dc.titleThe Effect of Gap Distance on the Heat Transfer Between a Finned Surface and a Porous Plateen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Schertzer_Michael_J._2005Aug_Masters..pdf
Open Access
10.84 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue