Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21910
Title: Design and Control of a Miniature Rotary Robot Joint
Authors: Sindrey, Russell
Advisor: Bone, Gary M.
Department: Mechanical Engineering
Keywords: design, control, miniature, rotary robot, joint, power-to-weight, magnetic field, feedforward controller
Publication Date: Dec-2006
Abstract: Over the past 20 years research into miniature actuators has been increasing. In addition to having a compact geometry, desirable characteristics for miniature actuators include having a large power-to-weight ratio, fast response, fine resolution of movement and high power efficiency. In the first part of this thesis the design of a miniature rotary robot joint is presented. Two single acting miniature cylinders each with a bore diameter of 4 mm drive the joint using water as the hydraulic fluid. The cylinders are mated to a rack and pinion mechanism that converts the opposing linear motion of the cylinders shafts into rotation. Also within the design, a novel position sensor using magnetic field sensing technology is presented. Overall, the joint measures 11 mm wide x 8.8 mm high x 150 mm long. In the second part of this thesis a hydraulic servo positioning system is presented along with a novel valve modeling technique and two position control strategies. Four low-cost, 3-way on/off solenoid valves were used to control the flow of the water in and out of the cylinders. The two nonlinear position controllers employed were a position-velocity-acceleration plus model-based feedforward controller (PVA+FF) and a novel PVA + FF plus sliding mode controller. For experiments involving horizontal rotation of the joint while carrying no load the PVA +FF controller achieved a steady-state error of ± 0.77° or ± 0.06 mm in terms of rack position. The steady-state error produced by the PVA + FF plus sliding mode controller was ± 0.85° or ± 0.07 mm. The maximum tracking error produced by both controllers was 5° or 0.41 mm and occurred during the initial cycloidal rising portion of a 120° displacement. The root mean square error (RMSE) of the PVA + FF and PVA + FF plus sliding mode controllers were 42% and 54% less than that produced by a linear PVA controller. Both controllers were found to be robust to changes in payload. This was experimentally verified by adding masses of 6.5 g and 13.5 g to the end of the output link of the joint. By conducting similar experiments in the vertical direction it was found that the PVA + FF plus sliding mode controller was more robust, achieving on average a 30% reduction in RMSE compared to the FF + PVA controller.
URI: http://hdl.handle.net/11375/21910
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Sindrey_Russell_2006Dec_Masters..pdf
Open Access
5.83 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue